
‭Air Traffic Monitoring and Control (ATC)‬

‭COEN 320‬
‭Introduction to Real-Time Systems‬

‭Due Date:‬
‭April 10, 2024‬

‭A Report‬
‭Presented to‬

‭The Department of Electrical & Computer Engineering‬
‭Concordia University‬

‭In Fulfillment‬
‭of the Requirements‬

‭of COEN 320‬

‭by‬
‭Omar Dabayeh (40100195)‬

‭Email: odabayeh@gmail.com‬
‭Hashim Nakhuda (40068968)‬

‭Email: hashim.aduhkan@gmail.com‬
‭Karyn Gamay (40044481)‬

‭Email: k_gamay@live.concordia.ca‬

‭Concordia University‬
‭April 2024‬



‭Table of Contents‬
‭Objective‬ ‭2‬
‭Introduction‬ ‭2‬
‭ATC System Interpretation‬ ‭3‬
‭Design‬ ‭5‬
‭Implementation‬ ‭6‬

‭Main‬ ‭7‬
‭Radar‬ ‭7‬
‭Data Display‬ ‭7‬
‭Computer System‬ ‭8‬

‭Safety Violation‬ ‭8‬
‭To Data Display‬ ‭9‬
‭To Communication System‬ ‭9‬
‭From Operator‬ ‭9‬

‭Operator‬ ‭9‬
‭Communication System‬ ‭10‬
‭Box‬ ‭10‬
‭Planes‬ ‭11‬

‭Lessons Learned‬ ‭11‬
‭Conclusion‬ ‭11‬



‭Objective‬
‭The objective of this project is to implement a simplified Air Traffic Monitoring and Control‬

‭system using the QNX real time operating system.‬

‭Introduction‬
‭An ATC, short for Air Traffic Monitoring and Control system, is designed to govern airspace,‬

‭ensuring the safe movement and navigation of planes under different circumstances.The‬

‭objectives of air traffic control system is to first maintain orderly air traffic flow and separation‬

‭between planes for safe plane movement and to avert collisions between planes. For this‬

‭project, the ATC system involves three categories: the tower control area, the terminal radar‬

‭control area (TRACON) and the en-route area. The tower control area is responsible for the‬

‭movement of planes within the airport. The TRACON is responsible for controlling the‬

‭departure, the arrivals, the overflights of the planes. Finally, the en-route area controls planes‬

‭when they leave the TRACON area, so when the plane reaches their cruising speed and‬

‭altitude. This project involves simulating a real-time airspace, within the en-route area, which‬

‭contains planes in different congestion traffic levels, low, medium and high.‬

‭There are a couple of assumptions that our team had to take into consideration when designing‬

‭the system. For the Operator console, we assumed that the user will not make any mistakes‬

‭when they enter the task number they want to run, the plane id and the values needed to‬

‭complete each task. For the safety violation, we assume, but still mentioned, that the user will‬

‭enter a value between 0 and 180. We also assumed that the airspace begins at 0.‬

‭ATC System Interpretation‬
‭The ATC system focuses on the en-route control system. The area of this system is a 3d‬

‭prism with dimensions‬‭x=100 000, y= 100 000, and z=25 000‬‭is located 15 000 ft above sea‬

‭level from the lowest point on the prism. The system should allow overall management of‬

‭aircrafts within the space. This includes maintaining and changing their speed or altitudes and‬

‭alerts for crashes and predicting collisions in the airspace (3 minutes). The requirements include‬

‭a Data Display that shows the positions of each aircraft every 5 seconds. As well as a logging‬

‭system that shows a summary of the airspace every 30 seconds. Aircrafts are implemented as‬

‭individual threads updating their location every second.‬



‭As shown below, there is an ontology created for this project. An overview of the main‬

‭requirements of each component:‬

‭-‬ ‭Radar: To detect and track aircrafts while routing the message to the Computer System.‬

‭-‬ ‭Computer System: Responsible for determining if there are any safety violations in the‬

‭airspace. If there is a safety violation within 3 minutes or a current crash occurring, the‬

‭system will notify the operator. Finally, Computer System routes incoming plane‬

‭messages from Radar to Data Display‬

‭-‬ ‭Operator Console: Enables the user to use a command line interface to change altitude,‬

‭velocity, period of safety violations and focus on a plane. Also stores cmd logs.‬

‭-‬ ‭Data Display: Displays a plane view of the airspace every 5 seconds. As well, stores‬

‭logs of the airspace.‬

‭-‬ ‭Communication System: Responsible for transmission of commands to aircrafts.‬



‭Design‬

‭We held multiple meetings to brainstorm the architecture of the system. After some‬

‭iterations, we came up with the design shown above.‬

‭Originally Data Display was supposed to display safety violations (alerts), display a plan‬

‭view of the space and log the airspace every 30 seconds.‬

‭The interaction between radar and plane originally was based on a flawed understanding‬

‭of how a client to server communication worked. It was understood that a client would make a‬

‭request for a response then the server would deliver what was requested if it was not busy. With‬

‭this we chose to make radar the client and plane the server. Later we learnt that this was wrong‬

‭and that radar should be the server and plane the client. Box was designed to hold planes and‬

‭handle anything to do with planes entering or leaving the airspace however, later it was seen to‬

‭be simpler to just have planes handle themselves entirely so in the implementation we will see‬

‭below box no longer needs remove ac but will need add to start all the plane threads.‬

‭When we first were discussing the project, we had the impression that the operator and‬

‭the computer system had to interact with each other to be able to tackle a given situation. After‬

‭asking questions, we thought that we did not need a new class for the Operator and that the‬

‭moment a plane found that they would be heading towards a crash, the Computer System‬

‭would ask the controller, cin, for new values to change the plane's trajectories.‬



‭Implementation‬

‭Solutions to some of the requirements(others discussed each component):‬

‭-‬ ‭The distance between each plane can be solved by scaling our airspace down to respect‬

‭these dimensions this way if 2 planes are on the same point we know they are within‬

‭these boundaries.‬

‭-‬ ‭The safety violation period being dynamic is resolved by having a flag be set and storing‬

‭the changed period by the computer system when it receives a message from the‬

‭operator.‬

‭-‬ ‭Planes leaving the airspace are resolved by planes checking if they are out of bounds‬

‭and then sending one last message to indicate to the other components by setting its x‬

‭position to -1. When a computer system or data display sees a -1 on the x position they‬

‭will know to no longer track the plane.‬

‭In safety violation it was desired to get the exact time at which the planes crashed however‬

‭given the implementation choice of using mathematics instead of using nested forloops every‬

‭second the time became rather complex to acquire sometimes we would get a division of zero.‬

‭Since this was more of a want rather than a requirement we chose to omit this.‬

‭When implementing message passing there were many issues faced. As mentioned in design‬

‭for main the actual order in which the threads start were crucial and often caused issues where‬

‭our clients would try to open an attach point that was not yet created.‬



‭Main‬
‭There are currently three mains that can be run. Each one demos a separate simulation with‬

‭regards to the three congestion levels. They first create a file for the test data of planes. This file‬

‭will run every time to ensure that the file will exist. It then starts the threads for radar, computer‬

‭system, data display and communication. Followed by reading the file input to create the‬

‭corresponding planes. The order here is crucial since planes are the only ones who start all the‬

‭message passing; this means if planes were initialized first they would be sending messages to‬

‭a server that doesn’t yet exist. After everything is initialized the program simply runs on its own‬

‭with the given initial values. The corresponding threads are then joined back to main.‬

‭Radar‬
‭In this project it was a requirement to make our parts modular. This was factored in when‬

‭designing radar. The current radar is a message passing server waiting for plane clients to send‬

‭to their updated position every 1 second. It then immediately sends this message to the‬

‭computer system. No processing is needed here however, this allows us to expand on the‬

‭functionalities of radar in the future.‬

‭Data Display‬

‭In the final implementation, Data Display has two main functions. Compared to the old design,‬

‭the display will no longer handle safety alerts as the Computer System will perform the‬

‭displaying of alerts itself. DD will still log as planned and it will display a plan view as planned.‬



‭The logging occurs every time a message is received. This creates a log file with all the plane‬

‭info (ID,x,y,z,vx,vy,vz).‬

‭The plan view is a 33x33x25 matrix. We chose this size so that the output is more readable.‬

‭Each unit in the x or y direction is 3030ft, because 100 000/ 33 = 3030.30 ft. Every unit in the z‬

‭direction is 1000 ft. The conversion of coordinates is completed in this class before displaying‬

‭planes.‬

‭The code utilizes two threads for this class. The first thread is the display thread and the second‬

‭is the server thread. The display thread runs the function‬‭runServer‬‭where a channel is created‬

‭for messages from the Computer System. The first thread calls the‬‭runDisplay‬‭function which‬

‭runs the‬‭displayData‬‭function every 5 seconds.‬‭displayData‬‭prints a matrix as mentioned above‬

‭and places planes from the messages in the right position. In the second thread, a server is‬

‭created and listens to incoming messages at‬‭ATC_Server1‬‭.‬

‭If‬‭focusOnPlane()‬‭is called then the‬‭focusedPlaneId‬‭is changed and the server only prints new‬

‭locations of the focused plane.‬

‭logMessage()‬‭is called every time a message is received. This was one of the complications we‬

‭had during the project. Storing the messages and periodically updating the log was a challenge.‬

‭Computer System‬
‭The Computer System is responsible for processing and redirecting received messages. The‬

‭following are the details of the different tasks that the Computer System is responsible for.‬

‭Safety Violation‬
‭When receiving a message from the plane it will check if it needs to store or update the plane's‬

‭information depending if it has the plane's id already this will be used in safety violation. The‬

‭safety violation is a periodic thread where its period can be changed during runtime. This was‬

‭done by the computer system setting a flag and storing the new period whenever the operator‬

‭sent the command to change the period. The safety thread on the next run will then check the‬

‭flag and it is set to update the period of its timer then resetting the flag. The actual logic on how‬

‭safety violation works is by first checking for an immediate crash if so displaying it to console as‬



‭an alert then checking for future crashes within 3 minutes of the current planes positions we‬

‭have in a map  for tracking all the planes in airspace. To check for future crashing some linear‬

‭mathematics are used for getting the intersection point of two lines in a 3d space.‬

‭To Data Display‬
‭When a message struct from the Operator, of the form id+“focus” is received, the Computer‬

‭System will redirect the command to Data Display to ask to print out the display of that plane.‬

‭To Communication System‬
‭The Computer System sends messages to the Communication System if the command from the‬

‭Operator asks to change either the altitude or the vector of a specific Plane.‬

‭From Operator‬
‭The Computer System receives messages from the Operator because it will be the one to‬

‭decide where the received messages will go next. Messages received from the Operator are of‬

‭type 0x01. Once the received messages are within the if statement, it will search the cmd in the‬

‭struct to find one of the following words: safety, focus, alt or vector. If the word safety is found,‬

‭the Computer System will set the safety period to the new value. If the word focus is found, the‬

‭received message will be sent to the Data Display. If the words alt or focus are found, the‬

‭received message will be sent to the Communication System which will then send it to the‬

‭Plane.‬

‭Operator‬
‭The Operator is the console who waits for inputs from the controller. Our project assumes that‬

‭the controller is fully knowledgeable on the different tasks and how they are used. The Operator‬

‭is a thread and uses the plane_data struct to send messages to Computer Systems. It starts by‬

‭introducing a menu of 4 tasks of the different tasks the operator can perform. The first task on‬

‭the menu is to change safety violation time. It asks the user to enter a new value for the safety‬

‭validation period. We assume that the operator will enter a value that is between 0 and 180.‬

‭Once the controller has entered a value, the value will be appended to the word safety and will‬

‭become the cmd in the struct that will be sent to the Computer System. The cmd string that will‬

‭be sent is “safety/n”. The second task on the menu is to focus on a plane. For this task to be‬

‭selected, the controller will have to enter 2. Then the Operator will ask for which plane ID would‬



‭the controller want to focus on. Once the value has been entered it will be equal to the id within‬

‭the struct and the word focus will be equal to the cmd in the struct then will be sent to the‬

‭Computer Systems. The third task is to change the altitude by changing the acceleration on the‬

‭z-axis of a specific plane. For this task to be selected, the controller will have to enter 3. Then‬

‭the Operator will ask for which plane ID would the controller want to change their altitude and by‬

‭how much. Once that is done, the plane ID will be equal to the id variable in the struct and‬

‭“alt/entered value” will be appended together and equal to the cmd of the struct. Once that is‬

‭done, it will be sent to the Computer System. Finally the final task, where the controller must‬

‭type in 4 for it to be selected, is to change the vector. If this task is selected, the Operator will‬

‭ask for which plane ID and new values for X,Y and Z. Note that, we don’t allow for the user to‬

‭enter values for both X and Y to avoid diagonal movement of the plane. If both X and Y are not‬

‭equal to 0, the controller will be warned and will have to re-enter 4 to be able to restart the task.‬

‭If all goes well, the id in the struct will be equal to the entered plane ID and the cmd will be equal‬

‭to “vector/x/y/z” then the whole will be sent to the Computer System.‬

‭Communication System‬
‭The communication system’s sole responsibility is to send commands entered in the Operator‬

‭Console, processed within the Computer System then finally to the specified plane. When the‬

‭message is received in the Communication System, it will take the message and use the‬

‭send(plane_data struct) within the system that will send the message over to the specified‬

‭Plane thread.‬

‭Box‬
‭This class is simply a list of all the planes. When the constructor is called it will read the given in‬

‭file corresponding to the specific congestion level then create planes for that line and once that‬

‭is done it will start their threads. It also holds a function to join the threads for all the planes for‬

‭convenience.‬

‭Planes‬
‭Plane represents a simulated plane with functionalities for updating its position, periodically‬

‭sending its position to Radar and receiving commands from the Communication System. Each‬

‭plane is initialized with 8 attributes: ID, the time it enters the airspace, x/y/z positions, and x/y/z‬



‭acceleration. After updating its position it will check if it left the airspace and if it did the next time‬

‭it runs it will set its x position to -1 and send the message to radar. This indicates it has left the‬

‭airspace then after the message is sent it will break out of the while loop thus ending its run.‬

‭Lessons Learned‬
‭We assumed that we were able to separate the systems amongst ourselves to work on them‬

‭individually, but soon realized that the different components relied on each other. So we had to‬

‭start working from the bottom up, meaning starting with planes. When having to debug various‬

‭issues it was best to just have a second project with only the required components to have a‬

‭sort of isolated system and then once that feature worked we could re-integrate the fixed‬

‭version. Another lesson was as stated earlier how message passing actually works and that‬

‭client is not meant to make a request for information. In the future when designing a system with‬

‭message passing this will be easier to design.‬

‭Conclusion‬
‭We worked with software to simulate a real time system. Creating our own design as well as‬

‭implementing the design gave us a more in depth understanding on how to better design these‬

‭systems and what to look out for or consider during the design phase in future projects. Overall‬

‭our project worked relatively well but took a lot of time to implement due to some issues faced‬

‭and some lack of understanding. For instance how client to server works in message passing,‬

‭the ordering of starting threads, how to divide the workload for this kind of project and what‬

‭aspects are more complicated than others which was different than originally thought because‬

‭each component was dependent on another. However, we were able to overcome these‬

‭obstacles and completed the majority, if not all, the tasks we had wanted to complete for this‬

‭project.‬


