
 Air Traffic Monitoring and Control (ATC)

 COEN 320
 Introduction to Real-Time Systems

 Due Date:
 April 10, 2024

 A Report
 Presented to

 The Department of Electrical & Computer Engineering
 Concordia University

 In Fulfillment
 of the Requirements

 of COEN 320

 by
 Omar Dabayeh (40100195)

 Email: odabayeh@gmail.com
 Hashim Nakhuda (40068968)

 Email: hashim.aduhkan@gmail.com
 Karyn Gamay (40044481)

 Email: k_gamay@live.concordia.ca

 Concordia University
 April 2024

 Table of Contents
 Objective 2
 Introduction 2
 ATC System Interpretation 3
 Design 5
 Implementation 6

 Main 7
 Radar 7
 Data Display 7
 Computer System 8

 Safety Violation 8
 To Data Display 9
 To Communication System 9
 From Operator 9

 Operator 9
 Communication System 10
 Box 10
 Planes 11

 Lessons Learned 11
 Conclusion 11

 Objective
 The objective of this project is to implement a simplified Air Traffic Monitoring and Control

 system using the QNX real time operating system.

 Introduction
 An ATC, short for Air Traffic Monitoring and Control system, is designed to govern airspace,

 ensuring the safe movement and navigation of planes under different circumstances.The

 objectives of air traffic control system is to first maintain orderly air traffic flow and separation

 between planes for safe plane movement and to avert collisions between planes. For this

 project, the ATC system involves three categories: the tower control area, the terminal radar

 control area (TRACON) and the en-route area. The tower control area is responsible for the

 movement of planes within the airport. The TRACON is responsible for controlling the

 departure, the arrivals, the overflights of the planes. Finally, the en-route area controls planes

 when they leave the TRACON area, so when the plane reaches their cruising speed and

 altitude. This project involves simulating a real-time airspace, within the en-route area, which

 contains planes in different congestion traffic levels, low, medium and high.

 There are a couple of assumptions that our team had to take into consideration when designing

 the system. For the Operator console, we assumed that the user will not make any mistakes

 when they enter the task number they want to run, the plane id and the values needed to

 complete each task. For the safety violation, we assume, but still mentioned, that the user will

 enter a value between 0 and 180. We also assumed that the airspace begins at 0.

 ATC System Interpretation
 The ATC system focuses on the en-route control system. The area of this system is a 3d

 prism with dimensions x=100 000, y= 100 000, and z=25 000 is located 15 000 ft above sea

 level from the lowest point on the prism. The system should allow overall management of

 aircrafts within the space. This includes maintaining and changing their speed or altitudes and

 alerts for crashes and predicting collisions in the airspace (3 minutes). The requirements include

 a Data Display that shows the positions of each aircraft every 5 seconds. As well as a logging

 system that shows a summary of the airspace every 30 seconds. Aircrafts are implemented as

 individual threads updating their location every second.

 As shown below, there is an ontology created for this project. An overview of the main

 requirements of each component:

 - Radar: To detect and track aircrafts while routing the message to the Computer System.

 - Computer System: Responsible for determining if there are any safety violations in the

 airspace. If there is a safety violation within 3 minutes or a current crash occurring, the

 system will notify the operator. Finally, Computer System routes incoming plane

 messages from Radar to Data Display

 - Operator Console: Enables the user to use a command line interface to change altitude,

 velocity, period of safety violations and focus on a plane. Also stores cmd logs.

 - Data Display: Displays a plane view of the airspace every 5 seconds. As well, stores

 logs of the airspace.

 - Communication System: Responsible for transmission of commands to aircrafts.

 Design

 We held multiple meetings to brainstorm the architecture of the system. After some

 iterations, we came up with the design shown above.

 Originally Data Display was supposed to display safety violations (alerts), display a plan

 view of the space and log the airspace every 30 seconds.

 The interaction between radar and plane originally was based on a flawed understanding

 of how a client to server communication worked. It was understood that a client would make a

 request for a response then the server would deliver what was requested if it was not busy. With

 this we chose to make radar the client and plane the server. Later we learnt that this was wrong

 and that radar should be the server and plane the client. Box was designed to hold planes and

 handle anything to do with planes entering or leaving the airspace however, later it was seen to

 be simpler to just have planes handle themselves entirely so in the implementation we will see

 below box no longer needs remove ac but will need add to start all the plane threads.

 When we first were discussing the project, we had the impression that the operator and

 the computer system had to interact with each other to be able to tackle a given situation. After

 asking questions, we thought that we did not need a new class for the Operator and that the

 moment a plane found that they would be heading towards a crash, the Computer System

 would ask the controller, cin, for new values to change the plane's trajectories.

 Implementation

 Solutions to some of the requirements(others discussed each component):

 - The distance between each plane can be solved by scaling our airspace down to respect

 these dimensions this way if 2 planes are on the same point we know they are within

 these boundaries.

 - The safety violation period being dynamic is resolved by having a flag be set and storing

 the changed period by the computer system when it receives a message from the

 operator.

 - Planes leaving the airspace are resolved by planes checking if they are out of bounds

 and then sending one last message to indicate to the other components by setting its x

 position to -1. When a computer system or data display sees a -1 on the x position they

 will know to no longer track the plane.

 In safety violation it was desired to get the exact time at which the planes crashed however

 given the implementation choice of using mathematics instead of using nested forloops every

 second the time became rather complex to acquire sometimes we would get a division of zero.

 Since this was more of a want rather than a requirement we chose to omit this.

 When implementing message passing there were many issues faced. As mentioned in design

 for main the actual order in which the threads start were crucial and often caused issues where

 our clients would try to open an attach point that was not yet created.

 Main
 There are currently three mains that can be run. Each one demos a separate simulation with

 regards to the three congestion levels. They first create a file for the test data of planes. This file

 will run every time to ensure that the file will exist. It then starts the threads for radar, computer

 system, data display and communication. Followed by reading the file input to create the

 corresponding planes. The order here is crucial since planes are the only ones who start all the

 message passing; this means if planes were initialized first they would be sending messages to

 a server that doesn’t yet exist. After everything is initialized the program simply runs on its own

 with the given initial values. The corresponding threads are then joined back to main.

 Radar
 In this project it was a requirement to make our parts modular. This was factored in when

 designing radar. The current radar is a message passing server waiting for plane clients to send

 to their updated position every 1 second. It then immediately sends this message to the

 computer system. No processing is needed here however, this allows us to expand on the

 functionalities of radar in the future.

 Data Display

 In the final implementation, Data Display has two main functions. Compared to the old design,

 the display will no longer handle safety alerts as the Computer System will perform the

 displaying of alerts itself. DD will still log as planned and it will display a plan view as planned.

 The logging occurs every time a message is received. This creates a log file with all the plane

 info (ID,x,y,z,vx,vy,vz).

 The plan view is a 33x33x25 matrix. We chose this size so that the output is more readable.

 Each unit in the x or y direction is 3030ft, because 100 000/ 33 = 3030.30 ft. Every unit in the z

 direction is 1000 ft. The conversion of coordinates is completed in this class before displaying

 planes.

 The code utilizes two threads for this class. The first thread is the display thread and the second

 is the server thread. The display thread runs the function runServer where a channel is created

 for messages from the Computer System. The first thread calls the runDisplay function which

 runs the displayData function every 5 seconds. displayData prints a matrix as mentioned above

 and places planes from the messages in the right position. In the second thread, a server is

 created and listens to incoming messages at ATC_Server1 .

 If focusOnPlane() is called then the focusedPlaneId is changed and the server only prints new

 locations of the focused plane.

 logMessage() is called every time a message is received. This was one of the complications we

 had during the project. Storing the messages and periodically updating the log was a challenge.

 Computer System
 The Computer System is responsible for processing and redirecting received messages. The

 following are the details of the different tasks that the Computer System is responsible for.

 Safety Violation
 When receiving a message from the plane it will check if it needs to store or update the plane's

 information depending if it has the plane's id already this will be used in safety violation. The

 safety violation is a periodic thread where its period can be changed during runtime. This was

 done by the computer system setting a flag and storing the new period whenever the operator

 sent the command to change the period. The safety thread on the next run will then check the

 flag and it is set to update the period of its timer then resetting the flag. The actual logic on how

 safety violation works is by first checking for an immediate crash if so displaying it to console as

 an alert then checking for future crashes within 3 minutes of the current planes positions we

 have in a map for tracking all the planes in airspace. To check for future crashing some linear

 mathematics are used for getting the intersection point of two lines in a 3d space.

 To Data Display
 When a message struct from the Operator, of the form id+“focus” is received, the Computer

 System will redirect the command to Data Display to ask to print out the display of that plane.

 To Communication System
 The Computer System sends messages to the Communication System if the command from the

 Operator asks to change either the altitude or the vector of a specific Plane.

 From Operator
 The Computer System receives messages from the Operator because it will be the one to

 decide where the received messages will go next. Messages received from the Operator are of

 type 0x01. Once the received messages are within the if statement, it will search the cmd in the

 struct to find one of the following words: safety, focus, alt or vector. If the word safety is found,

 the Computer System will set the safety period to the new value. If the word focus is found, the

 received message will be sent to the Data Display. If the words alt or focus are found, the

 received message will be sent to the Communication System which will then send it to the

 Plane.

 Operator
 The Operator is the console who waits for inputs from the controller. Our project assumes that

 the controller is fully knowledgeable on the different tasks and how they are used. The Operator

 is a thread and uses the plane_data struct to send messages to Computer Systems. It starts by

 introducing a menu of 4 tasks of the different tasks the operator can perform. The first task on

 the menu is to change safety violation time. It asks the user to enter a new value for the safety

 validation period. We assume that the operator will enter a value that is between 0 and 180.

 Once the controller has entered a value, the value will be appended to the word safety and will

 become the cmd in the struct that will be sent to the Computer System. The cmd string that will

 be sent is “safety/n”. The second task on the menu is to focus on a plane. For this task to be

 selected, the controller will have to enter 2. Then the Operator will ask for which plane ID would

 the controller want to focus on. Once the value has been entered it will be equal to the id within

 the struct and the word focus will be equal to the cmd in the struct then will be sent to the

 Computer Systems. The third task is to change the altitude by changing the acceleration on the

 z-axis of a specific plane. For this task to be selected, the controller will have to enter 3. Then

 the Operator will ask for which plane ID would the controller want to change their altitude and by

 how much. Once that is done, the plane ID will be equal to the id variable in the struct and

 “alt/entered value” will be appended together and equal to the cmd of the struct. Once that is

 done, it will be sent to the Computer System. Finally the final task, where the controller must

 type in 4 for it to be selected, is to change the vector. If this task is selected, the Operator will

 ask for which plane ID and new values for X,Y and Z. Note that, we don’t allow for the user to

 enter values for both X and Y to avoid diagonal movement of the plane. If both X and Y are not

 equal to 0, the controller will be warned and will have to re-enter 4 to be able to restart the task.

 If all goes well, the id in the struct will be equal to the entered plane ID and the cmd will be equal

 to “vector/x/y/z” then the whole will be sent to the Computer System.

 Communication System
 The communication system’s sole responsibility is to send commands entered in the Operator

 Console, processed within the Computer System then finally to the specified plane. When the

 message is received in the Communication System, it will take the message and use the

 send(plane_data struct) within the system that will send the message over to the specified

 Plane thread.

 Box
 This class is simply a list of all the planes. When the constructor is called it will read the given in

 file corresponding to the specific congestion level then create planes for that line and once that

 is done it will start their threads. It also holds a function to join the threads for all the planes for

 convenience.

 Planes
 Plane represents a simulated plane with functionalities for updating its position, periodically

 sending its position to Radar and receiving commands from the Communication System. Each

 plane is initialized with 8 attributes: ID, the time it enters the airspace, x/y/z positions, and x/y/z

 acceleration. After updating its position it will check if it left the airspace and if it did the next time

 it runs it will set its x position to -1 and send the message to radar. This indicates it has left the

 airspace then after the message is sent it will break out of the while loop thus ending its run.

 Lessons Learned
 We assumed that we were able to separate the systems amongst ourselves to work on them

 individually, but soon realized that the different components relied on each other. So we had to

 start working from the bottom up, meaning starting with planes. When having to debug various

 issues it was best to just have a second project with only the required components to have a

 sort of isolated system and then once that feature worked we could re-integrate the fixed

 version. Another lesson was as stated earlier how message passing actually works and that

 client is not meant to make a request for information. In the future when designing a system with

 message passing this will be easier to design.

 Conclusion
 We worked with software to simulate a real time system. Creating our own design as well as

 implementing the design gave us a more in depth understanding on how to better design these

 systems and what to look out for or consider during the design phase in future projects. Overall

 our project worked relatively well but took a lot of time to implement due to some issues faced

 and some lack of understanding. For instance how client to server works in message passing,

 the ordering of starting threads, how to divide the workload for this kind of project and what

 aspects are more complicated than others which was different than originally thought because

 each component was dependent on another. However, we were able to overcome these

 obstacles and completed the majority, if not all, the tasks we had wanted to complete for this

 project.

