COEN 413: Hardware Functional Verification
Project: Calculator — Design 11

Name:
Mohammed Zahed and Omar Dabayeh

Student ID: 40116292 and 40100195
Lab TA: Ashkan Samadi
Submission Date: April 15, 2024

| certify that this submission is my original work and meets the Faculty’s Expectations of Originality

i

>

TABLE OF CONTENTS

Lo INEFOTUCTION ettt b e bt b e sb e s bt e s bt e sb e e s beesbeesbeesaeesaeesmtesmeesmeesaeesanesanenas
2. Verification Plan Table........o i st re e e ne e e nnnes
2.0 AAAITION ettt et sttt e bt bt e et e e s be e et e e e ba e e h bt e sabeesabeeeabeesbaeeneeenares
B VL o1 - [o1 o T o H U TP PP PSR PR PR
B 3 114 =TS
3. INAIVIAUAI TEST CASES .uvvieuiieiiieeiieeitie ettt st et et e ettt sit e e sa e e s bt e sbee e bee e beeesmeeesubeesabeeebeesanseesaseesaseesseeanne
A, RESUIES ettt ettt b e bbbt b bt e bt e bt e bt e bt e bt e bt e nreenheenre e reenes
o S s Tt n (oY g ¥ | W @01V =T =TSSP

(00eY 1ol [0 11 o SRR

1. Introduction

This project explores the development and verification of Calculator Design Il. This device adds
significant improvements to its predecessor including 4 ports to allow simultaneous inputs. A DUT like
this requires an advanced architecture specifically, two pipelines to handle incoming transactions. The
first for addition/subtraction and the second for shifting operations. To manage this complexity and
maintain input-output verifiability, the design includes a 2-bit tag that can help correlate responses with
inputs even when delivered out of sequence. Here we use mailboxes from the master and monitor that
send to the scoreboard so that it can compare the expected results with the actual results. This will allow
us to find bugs within the DUT.

Transaction

mas2sch (
v % >L Scoreboard
Generator
4 mon2schb
gen2mas
A
N
Master calc2_if :
Monitors

DUT

Y

2. Verification Plan Table

This is how we planned on performing tests on the DUT

2.1 Addition
S.No | Functionality Operandl Operand2 Expected Conclusions
Functional Functional Result
Coverage Coverage
1 Positive + Positive 0x0 to 0x0 to 0x0 to Test passes,
Ox7FFFFFFF Ox7FFFFFFF OxFFFFFFFE addition
correct.
2 Positive + Negative 0x0 to 0x80000000 to | Ox0 to Test passes,
Ox7FFFFFFF OxFFFFFFFF OxFFFFFFFF subtraction
correct.
3 Negative + Negative 0x80000000 to | 0x80000000 to | Overflow or Test passes,
OxFFFFFFFF OxFFFFFFFF negative range | negative
sum
matches
expected.
4 Negative + Positive 0x80000000 to | Ox0 to 0x0 to Test passes,
OxFFFFFFFF Ox7FFFFFFF OxFFFFFFFF addition
results in
zero as
expected.
2.2 Subtraction
S.No | Functionality Operandl Operand2 Expected Conclusions
Functional Functional Result
Coverage Coverage
1 Positive - Positive 0x0 to 0x0 to OXFFFFFFFF to | Check if
Ox7FFFFFFF Ox7FFFFFFF Ox7FFFFFFF subtraction
is correct.
2 Positive - Negative 0x0 to 0x80000000 to | Ox0 to Should
Ox7FFFFFFF OxFFFFFFFF OxFFFFFFFF result in
addition due
to negative
operand.
3 Negative - Negative 0x80000000 to | 0x80000000 to | Ox0 to Subtracting
OxFFFFFFFF OxFFFFFFFF OxFFFFFFFF a larger
negative
increases
value.
4 Negative - Positive 0x80000000 to | Ox0 to 0x80000000 to | Becomes
OxFFFFFFFF Ox7FFFFFFF OxFFFFFFFF more

negative.

2.3 Shifting

When the 4 ports are driven asynchronously.

S.No | Functionality Operandl Operand2 Expected Conclusions
Functional Coverage Result
Coverage

1 Shift left operand1 by 0x0 to 0to 31 (low 0x0 to Check if left

operand?2 places OxFFFFFFFF order 5 bits) OxFFFFFFFF shift is
correct.

2 Shift right operand1 by 0x0 to 0to 31 (low 0x0 to Check if right

operand? places OxFFFFFFFF order 5 bits) OxFFFFFFFF shift is
correct.
3. Individual Test Cases
These are the individual test cases performed on the DUT
S.No | Functionality Operandl Operand2 Expected Obtained Conclusions
Result Result

1 Positive + 0x46d00a66 | Oxbbc28b80 | 0x8b0d7eeb6 | 0x8b0d7ee6 | Test passes if addition is
Positive correct.

2 Positive + Ox6FFFFFFF | 0x80000001 | OxFOO00000 | OxFOO00000 | Test checks wrap-
Negative around at boundary.

3 Negative + 0x80000000 | 0x80000000 | 0x00000000 | 0x00000000 | Test for correct negative
Negative overflow.

4 Negative + 0xf54b7e07 | 0x0937166f | 0xfe829476 0xfe829476 Test checks boundary
Positive wrap from negative to

positive.
S.No | Functionality Operandl Operand2 Expected Obtained Conclusions
Result Result

1 Positive - 0x60000000 | 0x20000000 | 0x40000000 | 0x40000000 | Check if subtraction is
Positive correct.

2 Positive - 0x40000000 | 0x80000000 | OxCOO00000 | OxCOO00000 | Should result in addition
Negative due to negative operand.

3 Negative - 0x80000000 | 0x90000000 | 0xFOOO0000 0xFO000000 Subtracting a larger
Negative negative increases value.

4 Negative - 0x80000000 | 0x10000000 | 0x90000000 0x90000000 Becomes more negative.
Positive

4. Results

At time 4808: Transaction Detalls: Type: ADD, Command = 1, Opl = a376c8ff, Op2 = af96@34c,Tag =
At time 4800: Transaction Details: Type: ADD, Data = Resp = 8, Tag = @

At time 4800: transaction successfully driven.

At time 4300: Transaction Details: Type: SHIFT, Command = 6, Opl = 43e6b@3b, e8eb3edb,Tag
At time 4808: Transaction Details: Ty SHIFT, Data = @, Resp =@, Tag = @

At time 4800: Transaction Details: Ty HIFT, Command = 6, Opl = 8b2508c9, aeccfe3d,Tag
At time 4800: Transaction Details: Type: SHIFT, Data = @, Resp =@, Tag = @

At time 4808: transaction successfully driven.

At time 4888: Transaction Details: Type: Command = 6, Opl = 43e6b83b, e8eb3edb, Tag
At time 4800: Transaction Details: Type: Data =@, Resp =0, Tag =@

At time 4800: Transaction Details: Type: SHIFT, Command = 6, Opl = ad@8579a, e997cf3b,Tag =
At time 4808: Transaction Details: Type: Data = @, Resp =8, Tag =@

At time 4808: transaction successfully dr

At time 4800: Transaction Details: Type: Command = 6, Opl = 43e6b83b, e8eb3edb, Tag
At time 4300: Transaction Details: Ty Data = @, Resp =0, Tag =@

At time 48088: Transaction Details: Ty Command = 5, Opl = c81f77al, 9cc22255, Tag
At time 4800: Transaction Details: Type: Data =@, Resp =@, Tag = @

At time 4800: transaction successfully driven.

At time 4808: Transaction Details: Type: SHIFT, Command = 6, Opl = 43e6b@3b, e8eb3edb,Tag =
At time 4888: Transaction Details: Type: SHIFT, Data = 8, Resp = @, Tag = @

At time 4800: 4 inputs have been sent!

MONITOR P Recieved response no.
MONITOR | Response out is 1@

MONITOR Output is 53@ccadb, Tag is @@

MONITOR Number of OMERFLOW Responses (local to port) - 1
MONITOR From port @ sent transaction with tag @ to SCOREBOARD.
MONLITOR - --- Port @ Response ended

MONITOR - --- Port 1 Recieved response no.
MONITOR | Response Qut is @1

MONITOR | Output is ©0@EEB4, Tag is 00

MONITOR Number of VALID Responses (local to port) - 1

MONITOR From port 1 sent transaction with tag @ to SCOREBOARD.
MONITOR

After receiving inputs driven confirmation from master and capturing outputs from monitor scoreboards,
starts calculation the score.

At time 7680: SCOREBOARD
IRERRRRRANN
SCOREBOARD | mms_sync signal received, stopping collection.
At time 7600: SCOREBOARD | Beginning monitor reponse extraction!
At time 7600: SCOREBOARD | Compared Master output and Monitor Output for port
At time 7600: SCOREBOARD | Emptied tag queue for port @ and tag

At time 7680: SCOREBOARD | Compared Master output and Monitor Output for port
At time 76080: SCOREBOARD | Emptied tag queue for port ® and tag
At time 7680: SCOREBOARD | Compared Master output and Monitor Output for port
At time 76080: SCOREBOARD | Emptied tag queue for port ® and tag
At time 7680: SCOREBOARD | Compared Master output and Monitor Output for port
At time 7680: SCOREBOARD | Emptied tag queue for port @ and tag
At time 7680: SCOREBOARD END of monitor side from port

Then the process repeats,

7620: MASTER | wait_scbd to finish triggerred continuing with driver!
7620: MASTER | In main() -- 16 inputs sent
7620: MASTER | In main() -- Waiting for 58 clock cycles, to CAPTURE OUTPUTS

12600 : MASTER
12600: MASTER
16608 : MASTER | Asserting Reset to 1, for 3 Clock Cycles

16908 : MASTER | Deasserting Reset to @, for 5 Clock Cycles

| In main() -- Done waiting.

|
|
|

17408 : MASTER | Output from port @: data_out=8, tag out=0

|
|
|
|
|

Reset Called!

17408 : MASTER Output from port 1: data out=08, tag out=0
17408 : MASTER Output from port 2: data out=08, tag out=0
17408 : MASTER Output from port 3: data_out=@, tag out=0
17408 : MASTER | reset EVENT triggered
17408 : MASTER | Reset EVENT observed.

The following are the potential functional bugs found.

Bug # Title Explanation
1 SHL does not work for port 0, 1. Shift Left gives us faulty results that does not
match with the expected output.
2 ADD not correct ADD will not correctly execute at first. Later
in the test cycles its starts to improve
3 SUB performance reduced with As the number of transactions increases,
more transactions SUB will perform worse

Response = 2 overflow/underflow

4.1 Functional Coverage

At time 85000: SCORFBOARD | Gnerating Report
#

--- Coverage Report

#

Input Coverage Port 1: 55.56%

Input Coverage Port 2: 55.56%

Input Coverage Port 3: 55.56%

Input Coverage Port 4: 55.56%

Output Coverage Port 1: 66.67%

Output Coverage Port 2: 77.78%

Output Coverage Port 3: 79.17%

Output Coverage Port 4: 106.00%

Output Coverage Incorrect/Correct: 108.00%
#

Total Correct Transactions: 137

Total Incorrect Transactions: 93

#

Input Coverage Port 1: 47.22%
Input Coverage Port 2: 55.56%
Input Coverage Port 3: 47.22%
Input Coverage Port 4: A7.22%
Output Coverage Port 1: 66.67%
Output Coverage Port 2: 66.67%
Output Coverage Port 3: 66.67%
Output Coverage Port 4: 66.67%
Output Coverage Incorrect/Correct: 100.08%
#

Total Correct Transactions: 14
Total Incorrect Transactions: 7
#

Transactions missed: @

i

--- Coverage Report ---

Input Coverage Port 1: 55.56%
Input Coverage Port 2: 55.56%
Input Coverage Port 3: 55.56%

Input Coverage Port 4: 55.56%

Output Coverage Port 1: 66.67%

Output Coverage Port 2: 83.33%

Output Coverage Port 3: 79.17%

Output Coverage Port 4: 91.67%

Output Coverage Incorrect/Correct: 100.00%

#

Total Correct Transactions: 359

Total Incorrect Transactions: 238

#

Transactions missed: @

By specifying bins of three ranges both inputs and outputs we sample the inputs and outputs.
The bins used are as follows:

putu;
int recvd_trans[@].data_out {

ata_ranges[] = {[6:1000], [1001:10068], [10001:2000000]};

t recvd_trans[8].resp_out {

esp_OK = {2'b¢

For the output, since the response 00 and 11 are regarded as correct, and it is from within these
inputs that we want to find which transaction are match the ones sent by the master we only assess 01
and 10. Any other output is default as INCORRECT.

5. Conclusion

During this lab we were introduced to calc2 which allowed each port to have up to four
outstanding commands, utilizing a tagging system to keep track of commands and responses, which
could occur out of order. Key achievements in this lab include many classes. In calc_if we defined
modports to regulate signal direction for different components of the testbench. In calc_master we
implemented tasks to fetch transactions from the generator mailbox and send them to the DUT while
also sending it to the scoreboard for testing. In calc_gen random calculator transactions are being
created controlled by a maximum transaction count. The class generates transactions sending them to a
specified mailbox gen2driver and keeps track on the number of transactions. In calc_trans each
transaction gets a unique ID and the randomize_transaction function allows for constraints during
randomization. In calc_monitor the main concurrently monitors all ports allowing it to track and forward
all activity from the device to the scoreboard. Calc_monitor uses a mailbox to forward outputs from the
DUT to the scoreboard for further verification. In calc_scoreboard mailboxes from master and monitor
send transactions where they are compared with their corresponding calculated value to ensure that the
input and output of the DUT is in fact correct. It is here where errors are found.

	1. Introduction
	2. Verification Plan Table
	2.1 Addition
	2.2 Subtraction
	2.3 Shifting

	3. Individual Test Cases
	4. Results
	4.1 Functional Coverage

	5. Conclusion

