Calc Project Overview

Design Specs

Copyright Wile, Roesner, Goss

Overview of Calc desgins

* A series of three designs:
— Calcl
— Calc2
— Calc3

* These designs were provided by IBM.:
Thanks to: Bruce Wile, John C. Goss,
Wolfgang Roesner

Copyright Wile, Roesner, Goss

Calcl

Calcl 1s a simple 4-port calculator.
Each port can send in 1 command at a time.

The commands consist of add, subtract,
shift left, and shift right.

The operand data accompanies the
commands.

Since there are 4 ports, there can be up to 4
outstanding commands at once.

Copyright Wile, Roesner, Goss

Calcl

* The mput/Output timing on a single port 1s
as follows:

regql cmd in<0:3> Z{77

reql data in<0:31> jf;7
out respl<0:1> //9/

out datal<0:31>

Copyright Wile, Roesner, Goss

Calcl

* The lightning bolt represents “some number
of cycles passing.”

regql cmd in<0:3> é

reql data in<0:31> ————— 7
out respl<0:1> //9/

out datal<0:31>

Copyright Wile, Roesner, Goss

Calcl

* A second request from the same port 1s
prohibited until the response from the first
command 1s received.

regql cmd in<0:3> é

reql data in<0:31> ————— 7
out respl<0:1> //9/

out datal<0:31>

Copyright Wile, Roesner, Goss

Calcl

 Internally, there are two ALUs: one that
processes all add commands, and the second
for all shift commands. Priority logic
dispatches the individual commands to the
ALUs. /

regql cmd in<0:3> Z{77
reql data in<0:31> %
out respl<0:1> //9/

out datal<0:31>

Copyright Wile, Roesner, Goss

Calc2

* The second design, Calc2, 1s much like the
first, except that each port may now have up
to 4 outstanding commands at a time.

Copyright Wile, Roesner, Goss

Calc2

* Each command from a port 1s sent in
serially (one at a time), but the calc log may
respond “out of order,” depending upon the
internal state of the queues.

Copyright Wile, Roesner, Goss

Calc2

e As aresult, each command 1s now
accompanied by a 2-bit tag, which 1dentifies
the command when the response 1s
received.

Copyright Wile, Roesner, Goss

Calc2

* A possible timing diagram:

req1 _cmd_in]
req1_data_in J i
req1_tag in]
req_resp1

req_data1

req_tag1

I 1]

Copyright Wile, Roesner, Goss

Calc2

* The lightning bolt represents “some number
of cycles passing.” The data accompanies a
successful response signal.

req1_cmd_in—'—‘—
req1 _data_in [—

req1 _tag in

req_resp1
req_data1
req_tag1

1

Copyright Wile, Roestier, Goss

Calc2

* A timing diagram of back-to-back
commands might look like:

req1_cmd_in —
req1_data in T

req1 _tag in

req_resp1 I
req_data1 / T
req_tag" J]J—_

Copyright Wile, Roesner, Goss

Calc2

* The lightning bolt represents “some number
of cycles passing.”

req1_cmd_in [
req1_data_in T

req1_tag_in

req_resp1 Eemis
req_data1 Il
req_tag1

Copyright Wile, Roesner, Goss

Calc2

* The data accompanies a successful response
signal. Responses may or may not be in
order, but the tags will identify which
command the response 1s for.

req1_cmd_in 1
req1_data_in T
req1_tag_in

req_resp1
req_data1
req_tag1

Copyright Wile, Roesner, Goss

Calc2

* There may be up to 16 commands

outstanding at once (4 ports, 4 commands
each).

 Asi1n Calcl, the commands are add,
subtract, shift left, and shift right.

Copyright Wile, Roesner, Goss

Calc3 Overview

* Design now has 16 internal data registers

— Arithmetic operands no longer sent by
requestor

— Operand data 1s read internally from registers

Copyright Wile, Roesner, Goss

Calc3 Overview

e Two new commands added to access
registers

— Fetch from register x
— Store to register x

Copyright Wile, Roesner, Goss

Calc3 Overview

e Two new branch commands

— Successful branch causes next command from
port to be skipped

Copyright Wile, Roesner, Goss

Calc3 Overview

* Each requestor can still send 1n up to 4
commands

— 2-bit tag on request
— Using same tag simultaneously 1s not supported

Copyright Wile, Roesner, Goss

Calc3 Overview

* Each port requestor 1s sending an instruction
stream

— In the first two Calc designs, the data accompanied the
command. But 1n this design, the arithmetic ops
reference operand registers internal to the design.
Therefore, instruction ordering (" instruction stream”)
concepts must be obeyed by the design so that within 1n
each port, the commands may only proceed out-of-
order when the operand registers do not conflict.

— The ordering rules are shown in the following slides.

Copyright Wile, Roesner, Goss

I/O Protocols

For each requestor X:

Inputs:
regX_cmd(0:3)

add: 0001 adds contents of d1 to d2 and stores in r1

subtract: 0010 subtracts contents of d2 from d1 and stores in r1

shift left: 0101 shifts contents of d1 to the left d2(27:31) places and stores in r1
shift right:0110 shifts contents of d1 to the right d2(27:31) places and stores in r1
store: 1001 stores reqX_data(0:31) into r1

fetch:1010 fetches contents of d1 and outputs it on out_dataX(0:31)

branch if zero: 1100 skip next valid command if contents of d1 are 0

branch if equal: 1101 skip next valid command if contents of d1 and d2 are equal

reqgX _d1(0:3)
reqX_d2(0:3)
regX _r1(0:3)
reqX_tag(0:1)
reqX _data(0:31)

Y Y VY vy yvyy

Outputs:
outX resp(0:1)
= Successful completion: 01
> overflow/underflow error:10
» Command skipped due to branch: 11
outX_tag(0:1)
outX data(0:31)

Copyright Wile, Roesner, Goss

[/O Timing

» Basic timing of a single arithmetic
command:

regX _cmd(0:3)]
regX_d1(0:3) V4
regX_d2(0:3) VoA
reqX_r1(0:3) — A/

regX_tag(0:1) — M /

outX resp(0:1) / / —

outX tag(0:1) / / —

Copyright Wile, Roesner, Goss

[/O Timing

» Basic timing of a store command:

regX_cmd(0:3)] /
regX_d1(0:3) //
regX_d2(0:3) //
regX_r1(0:3) [] / P
regX tag(0:1) 1 / /
regX_data(0:31) 1 //7/
outX resp(0:1) / / 1
outX tag(0:1) // 1

Copyright Wile, Roesner, Goss

[/O Timing

* Basic timing of a fetch command:

/

regX_cmd(0:3)]
regX_d1(0:3) — | //
regX_d2(0:3) //L/%
regX _r1(0:3)
reqX_tag(0:1) 41__[% /
outX resp(0:1) / /

1
outX tag(0:1) 1/ 1L
outX_data(0:31) y 4 1

Copyright Wile, Roesner, Goss

[/O Timing

» Basic timing of a branch command:

reqX_cmd(0:3) — 1
regX_d1(0:3) — 1 /7/

reqX_d2(0:3) L
regX_r1(0:3) / / Lﬂ

regX_tag(0:1) le_l /M /
outX resp(0:1) / /

—
outX tag(0:1) / 4]
outX_data(0:31) / y 4]

value is 1 if next command will be skipped
(branch occurs)

Copyright Wile, Roesner, Goss

[/O Timing

* Fastest multiple command (any cmd type) timing (example
1s 1f only one requestor 1s sending commands):

regX _cmd(0:3)
regX d1(0:3)
regX _d2(0:3)
regX_r1(0:3)
regX tag(0:1)
out_respX(0:1)
out_tagX(0:1)

o0 [J11p] 00'b == m =

frirrer

['oob] [01b] 10

Copyright Wile, Roesner, Goss

* Requestor must leave dead cycle between commands.

[/O Timing

* Requestor may only have 4 commands outstanding at a
time, each with a unique tag.

regX _cmd(0:3)

regX d1(0:3)

regX _d2(0:3)

regX_r1(0:3)

regX tag(0:1)

out_respX(0:1)

00'b

out_tagX(0:1)

frirrer

10b

Copyright Wile, Roesner, Goss

Command That Follows a Branch

* Any valid command can follow a branch.

* If the branch evaluates true, the following
command will be “skipped”:

— Add/Sub/SL/SR will not write to array
— Store will not write to array
— Fetch will not return data

— Brach will evaluate to false (case of branch
followed by branch)

Copyright Wile, Roesner, Goss

Command That Follows a Branch

* Response code of *11°b for follower
indicating above action has occurred.

* Invalid OP codes are 1gnored and are NOT

considered to “command that follows a
branch.”

Copyright Wile, Roesner, Goss

Command and Ordering Rules

« Within each requestor’s (port’s) instruction stream,
operations can complete out of order with the follow
restrictions:

— Operands (d1, d2) cannot be used if prior instruction in stream
writes (result rl) to the operand and prior instruction has not
completed.

— Results (r1) cannot be written if either of the prior command
operands (d1, d2) use the same register as R1.

— Same R1 (result) values from different instructions must complete
in order.

* There are no restrictions of this type across different
requestors.

Copyright Wile, Roesner, Goss

Functional Verification

Build a verification environment for
Calcl =» Done (Directed testcases)
Calc2,Calc3.

Test Plan

Random verification

Use SystemVerilog to build your verification
environment.

Y ou need to report all the bugs founds in
Calc2 and Calc3

Copyright Wile, Roesner, Goss

Functional verification

» Report for all students

» Presentation for grade students only.

