
Copyright Wile, Roesner, Goss

Calc Project Overview

Design Specs

Copyright Wile, Roesner, Goss

Overview of Calc desgins

• A series of three designs:
– Calc1
– Calc2
– Calc3

• These designs were provided by IBM:
Thanks to: Bruce Wile, John C. Goss,
Wolfgang Roesner

Copyright Wile, Roesner, Goss

Calc1

• Calc1 is a simple 4-port calculator.
• Each port can send in 1 command at a time.
• The commands consist of add, subtract,

shift left, and shift right.
• The operand data accompanies the

commands.
• Since there are 4 ports, there can be up to 4

outstanding commands at once.

Copyright Wile, Roesner, Goss

Calc1

• The input/Output timing on a single port is
as follows:

req1_data_in<0:31>

req1_cmd_in<0:3>

out_data1<0:31>

out_resp1<0:1>

Copyright Wile, Roesner, Goss

Calc1

• The lightning bolt represents “some number
of cycles passing.”

req1_data_in<0:31>

req1_cmd_in<0:3>

out_data1<0:31>

out_resp1<0:1>

Copyright Wile, Roesner, Goss

Calc1

• A second request from the same port is
prohibited until the response from the first
command is received.

req1_data_in<0:31>

req1_cmd_in<0:3>

out_data1<0:31>

out_resp1<0:1>

Copyright Wile, Roesner, Goss

Calc1

• Internally, there are two ALUs: one that
processes all add commands, and the second
for all shift commands. Priority logic
dispatches the individual commands to the
ALUs.

req1_data_in<0:31>

req1_cmd_in<0:3>

out_data1<0:31>

out_resp1<0:1>

Copyright Wile, Roesner, Goss

Calc2

• The second design, Calc2, is much like the
first, except that each port may now have up
to 4 outstanding commands at a time.

Copyright Wile, Roesner, Goss

Calc2

• Each command from a port is sent in
serially (one at a time), but the calc log may
respond “out of order,” depending upon the
internal state of the queues.

Copyright Wile, Roesner, Goss

Calc2

• As a result, each command is now
accompanied by a 2-bit tag, which identifies
the command when the response is
received.

Copyright Wile, Roesner, Goss

Calc2

• A possible timing diagram:

req1_cmd_in
req1_data_in
req1_tag_in

req_resp1
req_data1
req_tag1

Copyright Wile, Roesner, Goss

Calc2

• The lightning bolt represents “some number
of cycles passing.” The data accompanies a
successful response signal.

req1_cmd_in
req1_data_in
req1_tag_in

req_resp1
req_data1
req_tag1

Copyright Wile, Roesner, Goss

Calc2

• A timing diagram of back-to-back
commands might look like:

req1_cmd_in
req1_data_in
req1_tag_in

req_resp1
req_data1
req_tag1

Copyright Wile, Roesner, Goss

Calc2

• The lightning bolt represents “some number
of cycles passing.”

req1_cmd_in
req1_data_in
req1_tag_in

req_resp1
req_data1
req_tag1

Copyright Wile, Roesner, Goss

Calc2

• The data accompanies a successful response
signal. Responses may or may not be in
order, but the tags will identify which
command the response is for.

req1_cmd_in
req1_data_in
req1_tag_in

req_resp1
req_data1
req_tag1

Copyright Wile, Roesner, Goss

Calc2

• There may be up to 16 commands
outstanding at once (4 ports, 4 commands
each).

• As in Calc1, the commands are add,
subtract, shift left, and shift right.

Copyright Wile, Roesner, Goss

Calc3 Overview

• Design now has 16 internal data registers
– Arithmetic operands no longer sent by

requestor
– Operand data is read internally from registers

Copyright Wile, Roesner, Goss

Calc3 Overview

• Two new commands added to access
registers
– Fetch from register x
– Store to register x

Copyright Wile, Roesner, Goss

Calc3 Overview

• Two new branch commands
– Successful branch causes next command from

port to be skipped

Copyright Wile, Roesner, Goss

Calc3 Overview

• Each requestor can still send in up to 4
commands
– 2-bit tag on request
– Using same tag simultaneously is not supported

Copyright Wile, Roesner, Goss

Calc3 Overview

• Each port requestor is sending an instruction
stream
– In the first two Calc designs, the data accompanied the

command. But in this design, the arithmetic ops
reference operand registers internal to the design.
Therefore, instruction ordering (�instruction stream�)
concepts must be obeyed by the design so that within in
each port, the commands may only proceed out-of-
order when the operand registers do not conflict.

– The ordering rules are shown in the following slides.

Copyright Wile, Roesner, Goss

I/O Protocols
For each requestor X:

Inputs:
reqX_cmd(0:3)

➤ add: 0001 adds contents of d1 to d2 and stores in r1
➤ subtract: 0010 subtracts contents of d2 from d1 and stores in r1
➤ shift left: 0101 shifts contents of d1 to the left d2(27:31) places and stores in r1
➤ shift right:0110 shifts contents of d1 to the right d2(27:31) places and stores in r1
➤ store: 1001 stores reqX_data(0:31) into r1
➤ fetch:1010 fetches contents of d1 and outputs it on out_dataX(0:31)
➤ branch if zero: 1100 skip next valid command if contents of d1 are 0
➤ branch if equal: 1101 skip next valid command if contents of d1 and d2 are equal

reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)
reqX_tag(0:1)
reqX_data(0:31)

Outputs:
outX_resp(0:1)

➤ Successful completion: 01
➤ overflow/underflow error:10
➤ Command skipped due to branch: 11

outX_tag(0:1)
outX_data(0:31)

Copyright Wile, Roesner, Goss

I/O Timing

• Basic timing of a single arithmetic
command:

reqX_cmd(0:3)
reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)
reqX_tag(0:1)
outX_resp(0:1)
outX_tag(0:1)

Copyright Wile, Roesner, Goss

I/O Timing

• Basic timing of a store command:

reqX_cmd(0:3)
reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)
reqX_tag(0:1)

reqX_data(0:31)
outX_resp(0:1)
outX_tag(0:1)

Copyright Wile, Roesner, Goss

I/O Timing

• Basic timing of a fetch command:

reqX_cmd(0:3)
reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)
reqX_tag(0:1)
outX_resp(0:1)
outX_tag(0:1)

outX_data(0:31)

Copyright Wile, Roesner, Goss

I/O Timing

• Basic timing of a branch command:

reqX_cmd(0:3)
reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)

reqX_tag(0:1)
outX_resp(0:1)
outX_tag(0:1)

outX_data(0:31)

valid d2 value when command is 1101
value is 1 if next command will be skipped
(branch occurs)

Copyright Wile, Roesner, Goss

I/O Timing

• Fastest multiple command (any cmd type) timing (example
is if only one requestor is sending commands):

reqX_cmd(0:3)
reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)
reqX_tag(0:1)
out_respX(0:1)
out_tagX(0:1)

'00'b '11'b'10'b'01'b '00'b

'10'b'01'b

....
'00'b

Copyright Wile, Roesner, Goss

I/O Timing

• Requestor must leave dead cycle between commands.
• Requestor may only have 4 commands outstanding at a

time, each with a unique tag.

reqX_cmd(0:3)
reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)
reqX_tag(0:1)
out_respX(0:1)
out_tagX(0:1)

'00'b '11'b'10'b'01'b '00'b

'10'b'01'b

....
'00'b

Copyright Wile, Roesner, Goss

Command That Follows a Branch

• Any valid command can follow a branch.
• If the branch evaluates true, the following

command will be “skipped”:
– Add/Sub/SL/SR will not write to array
– Store will not write to array
– Fetch will not return data
– Brach will evaluate to false (case of branch

followed by branch)

Copyright Wile, Roesner, Goss

Command That Follows a Branch

• Response code of ’11’b for follower
indicating above action has occurred.

• Invalid OP codes are ignored and are NOT
considered to “command that follows a
branch.”

Command and Ordering Rules
• Within each requestor’s (port’s) instruction stream,

operations can complete out of order with the follow
restrictions:
– Operands (d1, d2) cannot be used if prior instruction in stream

writes (result r1) to the operand and prior instruction has not
completed.

– Results (r1) cannot be written if either of the prior command
operands (d1, d2) use the same register as R1.

– Same R1 (result) values from different instructions must complete
in order.

• There are no restrictions of this type across different
requestors.

Copyright Wile, Roesner, Goss

Functional Verification
• Build a verification environment for
• Calc1 è Done (Directed testcases)
• Calc2,Calc3.
• Test Plan
• Random verification
• Use SystemVerilog to build your verification

environment.
• You need to report all the bugs founds in

Calc2 and Calc3
Copyright Wile, Roesner, Goss

Functional verification

• Report for all students
• Presentation for grade students only.

