Calculator - Design 11

|. Design

This design is an extension to calculator design 1.

The initial design allowed only one command from each of the four ports at a time. All ports
needed to wait until the calculator completed execution of the current command before another
command could be sent.

In the new design, up to four commands can be sent into the calculator from each of the 4 ports.
Hence, (theoretically) the calculator could be working on up to 16 commands at a single time.

This single design change has major implications to the system. Since there are two internal
arithmetic pipelines in the calculator (one for add/sub and one for shifts), it is possible for
commands to be executed out of order. For example, if the four ports all send in 3 add
commands followed by a shift command, the calculator is likely to execute the shift commands
prior to the newer (more recently sent) add commands. However, the specification dictates that
commands from the same port that use the same pipeline (add/sub or shift) must return in order.

In order to correlate the responses to the correct commands, the specification calls for adding a
two bit tag to the input and output protocols. This tag shall be a unique identifier for each of the
commands from each port. (Inside the calculator design, the HDL maintains another pair of
“internal” tag bits to correlate the command back to the correct port).

Il. Problem Statement

This is a new design that contains added complexities. You must verify the correctness of the
design through simulation. Use the following information to drive and check the design:



A. Block Diagrams

1. Inputs/Outputs of the Calculator

c_clk
reset

reql_cmd_in(0:3)
reql_data_in(0:31)
reql_tag _in(0:1)

req2_cmd_in(0:3)
req2_data_in(0:31)
reg2_tag_in(0:1)

req3_cmd_in(0:3)
req3_data_in(0:31)
req3_tag_in(0:1)

req4_cmd_in(0:3)
req4_data_in(0:31)
req4_tag_in(0:1)

Calculator 2
Design

out_respl(0:1)

out_datal(0:31)

out_tagl(0:1)

out_resp2(0:1)

out_data2(0:31)

out_tag2(0:1)

out_resp3(0:1)

out_data3(0:31)

out_tag3(0:1)

out_resp4(0:1)

out_data4(0:31)

out_tag4(0:1)




c_clk: c_clk is the main clock.

reset: Needs to be held high for three cycles at the start of the testcase. Must remain low during
functional testing. Similarly, all input ports need to be driven low (‘0’b, not “X” or “U”) from
the start of simulation.

regX_cmd_in(0:3): Same definitions as first design. Add (‘0001°b), Subtract (‘0010°b), Shift
left (‘0101°b), and Shift right (‘0110°b).

regX_data_in(0:31): Same definition as first design. The operand data is sent one cycle after
another. Operandl data accompanies command, and operand2 data follows.

reqX_tag_in(0:1): Two bit identifier for each command from the port. Can be reused as soon
as the calculator responds to the command.

out_respX(0:1): Same definition as first design. Good response (‘01°b), invalid command or
overflow/underflow (‘10°b), and internal error (‘11°b; never happens). ‘00’b on the response line
indicates there’s no response from that port on that cycle.

out_dataX(0:31): Same definition as first design. This is the data that accompanies a good
response.

out_tagX(0:1): Corresponds to the command tag sent by the requester. Used to identify which
command the response if for.

B. Interface Timings

The following diagram represents the valid command input and output. This is the same as the
first exercise except that the tag bits are added.



reql_cmd_in 1
req 1_data_in4’_'_\—

reql_tag_in [

reg_respl
req_datal
req_tagl

111

The following diagram represents back-to-back timings on commands.

reql_cmd_in
reql_data_in

reql_tag_in

req_respl I
req_datal Eemil
req_tagl

Responses in above diagram could occur in back-to-back cycles. Responses are not necessarily
in order. However, if both requests used the add/sub commands, then they will return in order.
Similarly, commands from the same port that share the shift pipeline will return in order.



