Lab 5: Datapath/Control Unit Integration and system testing

Omar Dabayeh – 40100195 Section DI-X 2021/12/09

Objective

The objective of this lab is to design the entire control unit using entities from previous labs. The main components used will be the next-address unit, opcode unit, PC-register, Instruction cache, register file, ALU, sign extension and data cache. Using all these components, the data path interconnecting all these components together will be designed.

Procedure

The CPU designed will have all the main instructions that the MIPS CPU offers. A signal coming from the output of the icache unit will be routed to the opcode unit which defines all the inputs for all the units designed in previous labs.

Results

For the designed methodology, it was decided that a port map would be used to bring the entire circuit together. There are 7 components that will be used together plus an 8th circuit.vhd component. The components are as follows:

- Next_address: this component contains the next address unit.
- Opcoderoute: this component takes in the opcode and outputs all the inputs necessary for all other units.
- Pc_icache: this component contains the program counter, the ICACHE register AS WELL as the mux that decides between rt and rd for the destination register.
- Regfile: This component contains the register file.
- Signextension_mux: this component contains the sign extension component as well as the mux routes to the y of the ALU input.
- ALU: this component is the ALU that performs all the arithmetic functions
- Datacache: this is the component that saves results outputted by the ALU and ALSO the mux that takes in the outputs of the ALU and datacache.

Finally, using a portmap (circuit.vhd), all these components are interconnected. Below, all the code will be shown.

Next_address

```
architecture next_add_arch of next_address is
      signal branch offset: std logic vector(31 downto 0);
begin
inpuediting:process(pc, target address)
begin
      if (target address(15) = '0') then --sign extension branch offset
            branch offset(31 downto 16) <= (others => '0');
            branch_offset(15 downto 0) <= target_address(15 downto 0);</pre>
      else --sign extension branch offset
            branch_offset(31 downto 16) <= (others => '1');
            branch_offset(15 downto 0) <= target_address(15 downto 0);</pre>
      end if;
end process inpuediting;
PCMUX:process(pc_sel, branch_type, rs, rt, branch_offset, target_address, pc)
begin
      case pc_sel is
            when "00" =>
                  case branch_type is
                         when "01" => --beq
                               if (rs = rt) then
                                     next pc <= pc +
end if;
                         when "10" => --bne
                               if (rs /= rt) then
                                     next_pc<= pc +
"0000000000000000000000000000001" + branch_offset(31 downto 0);
                               end if;
                         when "11" => --bltz
                               if (rs(31) = '1') then
                                     next pc <= pc +
end if;
                         when "00" => --pc increment
                               when others =>
                  end case;
            when "01" => --jump address
```

```
next_pc <= "000000" & target_address;</pre>
               when "10" => --jump rs
                       next pc <= rs;
               when others => --next pc = pc
                       next_pc <= pc;
        end case;
end process PCMUX;
end next add arch;
Opcoderoute
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
entity opcoderoute is
port(
        icacheout_combin : in std_logic_vector(31 downto 0);
        reg write, reg dst, reg in src, alu src, add sub, data write: out std logic;
        logic_func, alu_func, sign_extend_func, branch_type, pc_sel: out std_logic_vector(1 downto 0));
end opcoderoute;
architecture opcoderoute_arch of opcoderoute is
begin
process(icacheout_combin)
begin
case icacheout_combin(31 downto 26) is
               when "001111" => --lui
                       reg write <= '1';
                       reg dst <= '0';
                       reg_in_src <= '1';
                       alu_src <= '1';
                       add sub <= '0';
                       data write <= '0';
                       logic_func <= "00";
                       alu_func <= "00";
                       sign extend func <= "00";
                       branch_type <= "00";
                       pc_sel <= "00";
               when "000000" =>
                       case icacheout_combin(5 downto 0) is
                               when "100000" => --add
```

```
reg_write <= '1';
        reg_dst <= '1';
        reg_in_src <= '1';
        alu_src <= '0';
        add_sub <= '0';
        data_write <= '0';
        logic_func <= "00";
        alu_func <= "10";
        sign extend func <= "10";
        branch_type <= "00";
        pc_sel <= "00";
when "100010" => --sub
        reg_write <= '1';
        reg_dst <= '1';
        reg in src <= '1';
        alu_src <= '0';
        add_sub <= '1';
        data_write <= '0';
        logic_func <= "00";
        alu_func <= "10";
        sign_extend_func <= "10";</pre>
        branch_type <= "00";
        pc_sel <= "00";
when "101010" => --slt
        reg_write <= '1';
        reg_dst <= '1';
        reg_in_src <= '1';
        alu_src <= '0';
        add sub <= '1';
        data_write <= '0';
        logic func <= "00";
        alu_func <= "01";
        sign_extend_func <= "01";
        branch_type <= "10";
        pc_sel <= "00";
when "100100" => --and
        reg write <= '1';
        reg_dst <= '1';
        reg_in_src <= '1';
        alu src <= '0';
        add_sub <= '1';
        data_write <= '0';
        logic_func <= "00";
        alu_func <= "11";
```

```
sign_extend_func <= "11";
        branch_type <= "00";
        pc sel <= "00";
when "100101" => --or
        reg_write <= '1';
        reg_dst <= '1';
        reg_in_src <= '1';
        alu_src <= '0';
        add sub <= '1';
        data_write <= '0';
        logic_func <= "01";
        alu func <= "11";
        sign_extend_func <= "11";</pre>
        branch_type <= "00";
        pc sel <= "00";
when "100110" => --xor
        reg_write <= '1';
        reg_dst <= '1';
        reg_in_src <= '1';
        alu_src <= '0';
        add sub <= '1';
        data_write <= '0';
        logic_func <= "10";
        alu_func <= "11";
        sign extend func <= "11";
        branch_type <= "00";
        pc sel <= "00";
when "100111" => --nor
        reg_write <= '1';
        reg_dst <= '1';
        reg in src <= '1';
        alu_src <= '0';
        add_sub <= '1';
        data_write <= '0';
        logic_func <= "11";
        alu_func <= "11";
        sign extend func <= "11";
        branch_type <= "00";
        pc_sel <= "00";
when "001000" => --jr
        reg_write <= '0';
        reg_dst <= '0';
        reg_in_src <= '0';
        alu_src <= '0';
```

```
add sub <= '0';
                        data write <= '0';
                        logic func <= "00";
                        alu_func <= "00";
                        sign_extend_func <= "00";
                        branch_type <= "11";
                        pc sel <= "00";
                when others =>
        end case;
when "001000" => --addi
        reg_write <= '1';
        reg dst <= '0';
        reg_in_src <= '1';
        alu_src <= '1';
        add sub <= '0';
        data_write <= '0';
        logic_func <= "00";
        alu func <= "10";
        sign_extend_func <= "10";
        branch_type <= "00";
        pc sel <= "00";
when "001010" => --slti
        reg write <= '1';
        reg_dst <= '0';
        reg in src <= '1';
        alu_src <= '1';
        add sub <= '0';
        data_write <= '0';
        logic func <= "00";
        alu_func <= "10";
        sign extend func <= "10";
        branch_type <= "00";
        pc_sel <= "00";
when "001100" => --andi
        reg_write <= '1';
        reg_dst <= '0';
        reg in src <= '1';
        alu_src <= '1';
        add_sub <= '1';
        data write <= '0';
        logic_func <= "00";
        alu_func <= "11";
        sign_extend_func <= "11";
        branch_type <= "00";
```

```
pc_sel <= "00";
when "001101" => --ori
        reg write <= '1';
        reg_dst <= '0';
        reg_in_src <= '1';
        alu src <= '1';
        add sub <= '1';
        data_write <= '0';
        logic func <= "01";
        alu_func <= "11";
        sign_extend_func <= "11";
        branch type <= "00";
        pc_sel <= "00";
when "001110" => --xori
        reg write <= '1';
        reg_dst <= '0';
        reg_in_src <= '1';
        alu src <= '1';
        add_sub <= '1';
        data_write <= '0';
        logic func <= "10";
        alu_func <= "11";
        sign_extend_func <= "11";
        branch_type <= "00";
        pc sel <= "00";
when "100011" => --lw
        reg write <= '1';
        reg_dst <= '0';
        reg in src <= '0';
        alu_src <= '1';
        add sub <= '0';
        data_write <= '0';
        logic_func <= "10";
        alu_func <= "10";
        sign_extend_func <= "10";</pre>
        branch_type <= "00";
        pc sel <= "00";
when "101011" => --sw
        reg_write <= '0';
        reg dst <= '0';
        reg_in_src <= '0';
        alu_src <= '1';
        add sub <= '0';
        data_write <= '1';
```

```
logic func <= "10";
        alu_func <= "10";
        sign extend func <= "10";
        branch_type <= "00";
        pc_sel <= "00";
when "000010" => --j
        reg write <= '0';
        reg_dst <= '0';
        reg in src <= '0';
        alu_src <= '0';
        add_sub <= '0';
        data write <= '0';
        logic_func <= "00";
        alu_func <= "00";
        sign extend func <= "00";
        branch_type <= "00";
        pc_sel <= "01";
when "000001" => --bltz
        reg_write <= '0';
        reg_dst <= '0';
        reg in src <= '0';
        alu_src <= '0';
        add sub <= '0';
        data_write <= '0';
        logic func <= "00";
        alu_func <= "00";
        sign_extend_func <= "00";
        branch_type <= "11";
        pc sel <= "00";
when "000100" => --beq
        reg write <= '0';
        reg_dst <= '0';
        reg_in_src <= '0';
        alu_src <= '0';
        add_sub <= '0';
        data_write <= '0';
        logic func <= "00";
        alu_func <= "00";
        sign_extend_func <= "00";
        branch type <= "11";
        pc_sel <= "00";
when "000101" => --bne
        reg_write <= '0';
        reg_dst <= '0';
```

```
reg in src <= '0';
                        alu_src <= '0';
                        add sub <= '0';
                        data write <= '0';
                        logic_func <= "00";
                        alu func <= "00";
                        sign extend func <= "00";
                        branch_type <= "10";
                        pc sel <= "00";
                when others =>
end case;
end process;
end opcoderoute_arch;
PC icache
library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std_logic_arith.all;
--use IEEE.std_logic_signed.all;
entity pc_icache is
port(
        clk, reset, reg dst: in std logic;
        nextaddressout_pcin : in std_logic_vector(31 downto 0);
        instruction : out std_logic_vector (31 downto 0);
        pcout : out std_logic_vector(31 downto 0);
        instruction_target_address : out std_logic_vector(25 downto 0);
        output_address_regfile : out std_logic_vector(4 downto 0);
        rs_out, rt_out, rd_out : out std_logic_vector(4 downto 0);
        immediate_out : out std_logic_vector(15 downto 0));
end pc_icache;
architecture pc_i_cache of pc_icache is
        signal pc : std_logic_vector(31 downto 0);
        --signal icache_address : std_logic_vector(4 downto 0);
        signal machine code instruction: std logic vector(31 downto 0);
begin
pcout <= pc;
instruction <= machine_code_instruction;</pre>
instruction_target_address <= machine_code_instruction(25 downto 0);</pre>
pcregister: process(clk,reset,nextaddressout_pcin)
begin
```

```
if (reset = '1') then
                             pc <= (others => '0');
                      elsif (clk'event and clk ='1') then
                             pc <= nextaddressout_pcin;</pre>
                      end if;
end process pcregister;
icache: process(pc)
begin
       case pc(4 downto 0) is
              when "00000" =>
                      machine_code_instruction <= "0011110000000010111011101110111"; -- lui
r1, 0111011101110111
              when "00001" =>
                      machine_code_instruction <= "00000000010000001000001000000"; -- add
r2, r1, r0
              when "00010" =>
                      machine_code_instruction <= "0011110000000110000111100001111"; -- lui
r3, 0000111100001111
              when "00011" =>
                      machine_code_instruction <= "0000000001000110010000000100010"; -- sub
r4, r1, r3
              when "00100" =>
                      machine code instruction <= "000000000000110010100000101010"; -- slt
r5, r0, r3
              when "00101" =>
                      machine code instruction <= "00100000011001100000000111111111"; -- addi
r6, r3, 000000011111111
              when "00110" =>
                      machine code instruction <= "001010000110011000000000000000"; -- slti
r6, r3, 0000000000000000
              when "00111" =>
                      machine code instruction <= "000000000100110011000000100100"; -- and
r6, r1, r3
              when "01000" =>
                      machine code instruction <= "0000000001000110011000000100101"; -- or
r6, r1, r3
              when "01001" =>
                      machine code instruction <= "000000000100110011000000100110"; -- xor
r6, r1, r3
              when "01010" =>
                      machine_code_instruction <= "000000000100110011000000100111"; -- nor
r6, r1, r3
```

```
when "01011" =>
                machine code instruction <= "00110000011001101111000011110000"; -- andi
r6, r3, 1111000011110000
          when "01100" =>
                machine_code_instruction <= "001101000110111110000111110000"; -- ori
r6, r3, 1111000011110000
          when "01101" =>
                machine_code_instruction <= "001110000110010101010101010101"; -- xori
r6, r3, 0101010101010101
          when "01110" =>
                machine_code_instruction <= "10001100101010101010101010101"; -- lw
r6, 0101010101010101(r5)
          when "01111" =>
                machine_code_instruction <= "10101100100001100101010101010101"; -- sw
r6, 01010101010101(r4)
          when "10000" =>
                10010
          when "10001" =>
                nothing
          when "10010" =>
                machine code instruction <= "00100000000100100000000010101"; -- addi
r9, r0, 000000000010101
          when "10011" =>
                machine code instruction <= "00001000000000000000000010101"; -- jr r9
          when "10100" =>
                nothing
          when "10101" =>
                machine code instruction <= "0000010001000000000000000010111"; --
     bltz r2, 10111
          when "10110" =>
                nothing
          when "10111" =>
                machine code instruction <= "00010000000101000000000011001"; -- beq
r0, r10, 11001
          when "11000" =>
                nothing
          when "11001" =>
                machine_code_instruction <= "00010100001000100000000011011"; -- bne
r1, r2, 11011
```

```
when "11010" =>
                   nothing
            when "11011" =>
                   nothing
            when others =>
                   nothing
      end case;
end process icache;
rs_rt_etc_out: process(machine_code_instruction)
begin
      rs out<=machine code instruction(25 downto 21);
      rt_out<=machine_code_instruction(20 downto 16);
      rd_out<=machine_code_instruction(15 downto 11);</pre>
      immediate out<=machine code instruction(15 downto 0);
end process rs_rt_etc_out;
mux: process(reg dst,machine code instruction)
begin
      case reg_dst is
            when '0' => --rt
                   output address regfile <= machine code instruction(20 downto 16);
            when '1' => --rd
                   output address regfile <= machine code instruction(15 downto 11);
            when others =>
      end case;
end process mux;
end pc_i_cache;
Regfile
library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std_logic_unsigned.all;
entity regfile is
port( din : in std_logic_vector(31 downto 0);
            reset : in std_logic;
            clk: in std logic;
            write: in std_logic;
            read_a : in std_logic_vector(4 downto 0);
```

```
read_b : in std_logic_vector(4 downto 0);
                 write_address : in std_logic_vector(4 downto 0);
                 out_a : out std_logic_vector(31 downto 0);
                 out_b : out std_logic_vector(31 downto 0));
end regfile;
architecture unti of regfile is
        type registerfile is array (31 downto 0) of std logic vector(31 downto 0);--:= (others => (others
=> '0'));
        signal bitreg: registerfile:= (others => (others => '0'));
begin
        out_a <= bitreg(conv_integer(read_a));</pre>
        out_b <= bitreg(conv_integer(read_b));</pre>
        writing:process(reset, clk, write)
        begin
                 if (reset = '1') then
                         bitreg(0) <= (others => '0');
                         bitreg(1) <= (others => '0');
                         bitreg(2) <= (others => '0');
                         bitreg(3) <= (others => '0');
                         bitreg(4) <= (others => '0');
                         bitreg(5) <= (others => '0');
                         bitreg(6) <= (others => '0');
                         bitreg(7) <= (others => '0');
                         bitreg(8) <= (others => '0');
                         bitreg(9) <= (others => '0');
                         bitreg(10) <= (others => '0');
                         bitreg(11) <= (others => '0');
                         bitreg(12) <= (others => '0');
                         bitreg(13) <= (others => '0');
                         bitreg(14) <= (others => '0');
                         bitreg(15) <= (others => '0');
                         bitreg(16) <= (others => '0');
                         bitreg(17) <= (others => '0');
                         bitreg(18) <= (others => '0');
                         bitreg(19) <= (others => '0');
                         bitreg(20) <= (others => '0');
                         bitreg(21) <= (others => '0');
                         bitreg(22) <= (others => '0');
```

```
bitreg(23) <= (others => '0');
                        bitreg(24) <= (others => '0');
                        bitreg(25) <= (others => '0');
                        bitreg(26) <= (others => '0');
                        bitreg(27) <= (others => '0');
                        bitreg(28) <= (others => '0');
                        bitreg(29) <= (others => '0');
                        bitreg(30) <= (others => '0');
                        bitreg(31) <= (others => '0');
                elsif(write ='1' and clk'event and clk='1') then
                        bitreg(conv_integer(write_address)) <= din;</pre>
                end if;
        end process;
end unti;
Signextension mux
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std logic arith.all;
use IEEE.std_logic_signed.all;
entity signextension mux is
port(
        func : in std_logic_vector(1 downto 0);
        immediate: in std logic vector(15 downto 0);
        out_b_input : in std_logic_vector(31 downto 0);
        alu src: in std logic;
        muxout_aluin : out std_logic_vector(31 downto 0));
end signextension_mux;
architecture sign extension of signextension mux is
        signal sign_extension_output : std_logic_vector(31 downto 0);
begin
signextensionblock: process(immediate, func)
begin
        case func is
                when "00" =>
                        sign_extension_output(15 downto 0) <= (others => '0');
                        sign_extension_output(31 downto 16) <= immediate;</pre>
                when "01" =>
                        sign_extension_output(15 downto 0) <= immediate;</pre>
                        sign_extension_output(31 downto 16) <= (others => immediate(15));
```

```
when "10" =>
                        sign_extension_output(15 downto 0) <= immediate;</pre>
                        sign extension output(31 downto 16) <= (others => immediate(15));
                when "11" =>
                        sign_extension_output(15 downto 0) <= immediate;</pre>
                        sign extension output(31 downto 16) <= (others => '0');
                when others =>
        end case;
end process signextensionblock;
mux: process(sign_extension_output, out_b_input, alu_src)
begin
        if (alu_src = '0') then
                muxout_aluin <= out_b_input;</pre>
        else
                muxout_aluin <= sign_extension_output;</pre>
        end if;
end process mux;
end sign_extension;
ALU
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
entity ALU is
port(x, y : in std_logic_vector(31 downto 0);
        add_sub : in std_logic;
        logic_func : in std_logic_vector(1 downto 0);
        func : in std_logic_vector(1 downto 0);
        output : out std_logic_vector(31 downto 0);
        overflow: out std logic;
        zero: out std logic);
end ALU;
architecture calc of ALU is
        signal logic_unit_output, add_subtract_output: std_logic_vector(31 downto 0);
begin
        outputmux: process(func, add_subtract_output, logic_unit_output, y)
                begin
```

```
case func is
                               when "00" =>
                                      output <= y;
                               when "01" =>
                                      add_subtract_output(31);
                               when "10" =>
                                      output <= add_subtract_output;</pre>
                               when "11" =>
                                      output <= logic_unit_output;</pre>
                               when others =>
                                      null;
                       end case;
       end process outputmux;
       logicunit: process(logic_func, x, y)
               begin
                       case logic_func is
                               when "00" =>
                                      logic_unit_output <= x and y;</pre>
                               when "01" =>
                                      logic_unit_output <= x or y;</pre>
                               when "10" =>
                                      logic_unit_output <= x xor y;</pre>
                               when "11" =>
                                      logic_unit_output <= x nor y;</pre>
                               when others =>
                                      logic_unit_output <= (others => '0');
                       end case;
       end process logicunit;
       adder_subtract: process(y, x, add_sub)
               begin
                       if add_sub = '0' then
                               add_subtract_output <= x + y;</pre>
                       elsif add_sub = '1' then
                               add subtract output <= x - y;
                       else
                               null;
                       end if;
       end process adder_subtract;
       zeroreg: process(add_subtract_output)
               begin
```

```
if (unsigned(add_subtract_output) = 0) then
                                    zero <= '1';
                           else
                                    zero <= '0';
                           end if;
         end process zeroreg;
         overflowreg: process(x, y, add_subtract_output, add_sub)
                  begin
                           case add_sub is
                                    when '0' =>
                                             if (x(31) = '0' \text{ and } y(31) = '0' \text{ and add\_subtract\_output}(31) = '1')
then
                                                      overflow <= '1';
                                             elsif (x(31) = '1' \text{ and } y(31) = '1' \text{ and add\_subtract\_output}(31) =
'0') then
                                                      overflow <= '1';
                                             else
                                                      overflow <= '0';
                                             end if;
                                    when '1' =>
                                             if (x(31) = '1' \text{ and } y(31) = '0' \text{ and } add\_subtract\_output(31) = '0')
then
                                                      overflow <= '1';
                                             elsif (x(31) = '0' \text{ and } y(31) = '1' \text{ and } add_subtract\_output(31) =
'1') then
                                                      overflow <= '1';
                                             else
                                                      overflow <='0';
                                             end if;
                                    when others =>
                                             null;
                           end case;
         end process overflowreg;
end;
Datacache
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
entity datacache is
```

```
port(
        clk, reset, data_write, reg_in_src: in std_logic;
        mux_d_output : out std_logic_vector(31 downto 0);
        d_cache_in : in std_logic_vector(31 downto 0);
        aluout_dcachein: in std_logic_vector(31 downto 0));
end datacache;
architecture data_c_arch of datacache is
        type dcache is array (31 downto 0) of std logic vector(31 downto 0);
        signal d_cache : dcache := (others => '0'));
        signal d cache address: std logic vector(4 downto 0);
        signal d_cache_out : std_logic_vector(31 downto 0);
begin
d_cache_address <= aluout_dcachein(4 downto 0);</pre>
data cache:process(clk, reset,d cache in)
begin
                if (reset = '1') then
                        d_cache(0) <= (others => '0');
                        d_cache(1) <= (others => '0');
                        d cache(2) <= (others => '0');
                        d_cache(3) <= (others => '0');
                        d cache(4) <= (others => '0');
                        d_cache(5) <= (others => '0');
                        d cache(6) <= (others => '0');
                        d_cache(7) <= (others => '0');
                        d cache(8) <= (others => '0');
                        d_cache(9) <= (others => '0');
                        d cache(10) <= (others => '0');
                        d_cache(11) <= (others => '0');
                        d_cache(12) <= (others => '0');
                        d cache(13) <= (others => '0');
                        d_cache(14) <= (others => '0');
                        d_cache(15) <= (others => '0');
                        d cache(16) <= (others => '0');
                        d_cache(17) <= (others => '0');
                        d_cache(18) <= (others => '0');
                        d cache(19) <= (others => '0');
                        d_cache(20) <= (others => '0');
                        d_cache(21) <= (others => '0');
                        d cache(22) <= (others => '0');
                        d_cache(23) <= (others => '0');
```

```
d cache(24) <= (others => '0');
                        d_cache(25) <= (others => '0');
                        d cache(26) <= (others => '0');
                        d cache(27) <= (others => '0');
                        d_cache(28) <= (others => '0');
                        d cache(29) <= (others => '0');
                        d cache(30) <= (others => '0');
                        d_cache(31) <= (others => '0');
                elsif (clk'event and clk ='1' and data write = '1') then
                        d_cache(conv_integer(d_cache_address)) <= d_cache_in;</pre>
                end if;
end process data cache;
d_cache_mux:process(reg_in_src,d_cache_address,aluout_dcachein)
begin
        if (reg_in_src = '0') then
                mux_d_output <= d_cache(conv_integer(d_cache_address));</pre>
        else
                mux_d_output <= aluout_dcachein;</pre>
        end if:
end process d cache mux;
end data_c_arch;
Circuit.vhd
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
entity cpu is
port(reset : in std_logic;
clk: in std logic;
rs_out, rt_out : out std_logic_vector(3 downto 0); -- output ports from register file
pc_out : out std_logic_vector(3 downto 0); -- pc reg
overflow, zero : out std_logic);
end cpu;
architecture cpu5 of cpu is
--components
component next_address
port(rt, rs : in std_logic_vector(31 downto 0);
        pc: in std logic vector(31 downto 0);
        target_address : in std_logic_vector(25 downto 0);
        branch_type : in std_logic_vector(1 downto 0);
```

```
pc_sel : in std_logic_vector(1 downto 0);
        next_pc : out std_logic_vector(31 downto 0));
end component;
component pc_icache --ADD AN OUTPUT FOR OPCODEROUTE
port(
       clk, reset, reg_dst: in std_logic;
        nextaddressout pcin: in std logic vector(31 downto 0);
       instruction: out std logic vector (31 downto 0);
        pcout : out std_logic_vector(31 downto 0);
       instruction target address: out std logic vector(25 downto 0);
        output_address_regfile : out std_logic_vector(4 downto 0);
        rs_out, rt_out, rd_out : out std_logic_vector(4 downto 0);
        immediate out : out std logic vector(15 downto 0));
end component;
component regfile
port( din : in std_logic_vector(31 downto 0);
               reset : in std_logic;
               clk: in std logic;
               write : in std_logic;
               read a: in std logic vector(4 downto 0);
               read_b : in std_logic_vector(4 downto 0);
               write address: in std logic vector(4 downto 0);
               out_a: out std_logic_vector(31 downto 0);
               out_b : out std_logic_vector(31 downto 0));
end component;
component signextension_mux
port(
       func : in std_logic_vector(1 downto 0);
       immediate : in std_logic_vector(15 downto 0);
       out_b_input : in std_logic_vector(31 downto 0);
       alu_src : in std_logic;
        muxout_aluin : out std_logic_vector(31 downto 0));
end component;
component ALU
port(x, y : in std logic vector(31 downto 0);
       add sub: in std logic;
       logic_func : in std_logic_vector(1 downto 0);
       func : in std_logic_vector(1 downto 0);
        output : out std_logic_vector(31 downto 0);
```

```
overflow: out std logic;
       zero: out std_logic);
end component;
component datacache
port(
       clk, reset, data_write, reg_in_src: in std_logic;
        mux_d_output : out std_logic_vector(31 downto 0);
        d cache in: in std logic vector(31 downto 0);
       aluout_dcachein : in std_logic_vector(31 downto 0));
end component;
component opcoderoute
port(
       icacheout combin: in std logic vector(31 downto 0);
        reg_write, reg_dst, reg_in_src, alu_src, add_sub, data_write: out std_logic;
        logic_func, alu_func, sign_extend_func, branch_type, pc_sel: out std_logic_vector(1 downto 0));
end component;
--signal
signal insig_pc_sel, insig_branch_type, insig_func_sign, insig_func_alu, insig_logic_func:
std logic vector(1 downto 0);
signal insig_reset, insig_clk, insig_reg_dst, insig_reg_write, insig_alu_src, insig_add_sub,
insig data write, insig reg in src: std logic;
signal insig_ta : std_logic_vector(25 downto 0);
signal iout_opcoderoute, pcout_nain, naout_pcin, d_in_sig, out_a_sig, out_b_sig, muxout_aluyin,
alu_out: std_logic_vector(31 downto 0);
signal rd rt, rs read a, rt read b, rd address: std logic vector(4 downto 0);
signal immediate_extend: std_logic_vector(15 downto 0);
--signal iout_opcoderoute, pcout_nain,naout_pcin,d_in_sig,out_a_sig,out_b_sig,muxout_aluyin,alu_out
: std_logic_vector(31 downto 0);
--signal rd rt, rs read a, rt read b, rd address: std logic vector(4 downto 0);
--signal immediate_extend: std_logic_vector(15 downto 0);
for U1: next_address use entity WORK.next_address(next_add_arch);
for U2: pc_icache use entity WORK.pc_icache(pc_i_cache);
for U3: regfile use entity WORK.regfile(unti);
for U4: signextension_mux use entity WORK.signextension_mux(sign_extension);
```

```
for U5: ALU use entity WORK.ALU(calc);
for U6: datacache use entity WORK.datacache(data c arch);
for U7: opcoderoute use entity WORK.opcoderoute(opcoderoute arch);
begin
rs out <= out a sig(3 downto 0);
rt_out <= out_b_sig(3 downto 0);
pc out <= pcout nain(3 downto 0);</pre>
U1: next address port map (rt => out b sig, rs=> out a sig, pc=> pcout nain, target address=>
insig_ta, branch_type=> insig_branch_type, pc_sel=> insig_pc_sel, next_pc=> naout_pcin);
U2: pc_icache port map (clk => clk, reset => reset, reg_dst => insig_reg_dst, nextaddressout_pcin =>
naout pcin, instruction => iout opcoderoute, pcout=>pcout nain, output address regfile => rd rt,
rs_out => rs_read_a, rt_out => rt_read_b, rd_out => rd_address, immediate_out => immediate_extend,
instruction target address => insig ta);
U3: regfile port map (din => d in sig, reset => reset, clk => clk, write => insig reg write, read a =>
rs read a, read b => rt read b, write address => rd rt, out a => out a sig, out b => out b sig);
U4: signextension_mux port map (func => insig_func_sign, immediate => immediate_extend,
out b input => out b sig, alu src => insig alu src, muxout aluin => muxout aluyin);
U5: ALU port map (x => out_a_sig, y => muxout_aluyin, add_sub => insig_add_sub, logic_func =>
insig logic func, func => insig func alu, output => alu out, overflow => overflow, zero => zero);
U6: datacache port map (clk => clk, reset => reset, data_write => insig_data_write, reg_in_src =>
insig reg in src, mux d output => d in sig, d cache in => out b sig, aluout dcachein => alu out);
U7: opcoderoute port map (icacheout_combin => iout_opcoderoute, reg_write => insig_reg_write,
reg dst => insig reg dst, reg in src => insig reg in src, alu src => insig alu src, add sub =>
insig add sub, data write => insig data write, logic func => insig logic func, alu func =>
insig func alu, sign extend func => insig func sign, branch type => insig branch type, pc sel =>
```

insig_pc_sel);
end cpu5;

Modelsim Simulation

Opcoderoute

Attached at end of document: opcode.pdf

CPU

Attached at end of document: CPU0-23.pdf, CPU23-46.pdf

Directory Listing

```
[grace] [/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl_1] > pwd
```

/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1

[grace] [/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1] > Is -al cpu.bit

-rw-rw---- 1 o_dabaye o_dabaye 3825888 Dec 8 11:58 cpu.bit

[grace] [/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1] >

Log files

Implementation Design

```
*** Running vivado
    with args -log cpu.vdi -applog -m64 -product Vivado -messageDb vivado.pb
-mode batch -source cpu.tcl -notrace
***** Vivado v2018.2 (64-bit)
  **** SW Build 2258646 on Thu Jun 14 20:02:38 MDT 2018
  **** IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018
    ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
source cpu.tcl -notrace
Command: link_design -top cpu -part xc7a100tcsg324-1
Design is defaulting to srcset: sources 1
Design is defaulting to constrset: constrs 1
INFO: [Netlist 29-17] Analyzing 306 Unisim elements for replacement
INFO: [Netlist 29-28] Unisim Transformation completed in 0 CPU seconds
INFO: [Project 1-479] Netlist was created with Vivado 2018.2
INFO: [Device 21-403] Loading part xc7a100tcsg324-1
INFO: [Project 1-570] Preparing netlist for logic optimization
Parsing XDC File
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/constrs 1/import
s/lab5tedstuff/cpu.xdc]
Finished Parsing XDC File
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/constrs 1/import
s/lab5tedstuff/cpu.xdcl
INFO: [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).
INFO: [Project 1-111] Unisim Transformation Summary:
```

No Unisim elements were transformed.

```
7 Infos, 0 Warnings, 0 Critical Warnings and 0 Errors encountered.
link design completed successfully
link_design: Time (s): cpu = 00:00:12 ; elapsed = 00:01:29 . Memory (MB):
peak = 1704.559 ; gain = 330.414 ; free physical = 44229 ; free virtual =
150487
Command: opt design
Attempting to get a license for feature 'Implementation' and/or device
'xc7a100t'
INFO: [Common 17-349] Got license for feature 'Implementation' and/or device
'xc7a100t'
Running DRC as a precondition to command opt design
Starting DRC Task
INFO: [DRC 23-27] Running DRC with 8 threads
INFO: [Project 1-461] DRC finished with 0 Errors
INFO: [Project 1-462] Please refer to the DRC report (report drc) for more
information.
Time (s): cpu = 00:00:02; elapsed = 00:00:04. Memory (MB): peak = 1777.586
; gain = 73.027 ; free physical = 44222 ; free virtual = 150480
Starting Cache Timing Information Task
INFO: [Timing 38-35] Done setting XDC timing constraints.
Ending Cache Timing Information Task | Checksum: 126f05278
Time (s): cpu = 00:00:16; elapsed = 00:01:22. Memory (MB): peak = 2251.086
; gain = 473.500 ; free physical = 43826 ; free virtual = 150084
Starting Logic Optimization Task
Phase 1 Retarget
INFO: [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).
INFO: [Opt 31-49] Retargeted 0 cell(s).
Phase 1 Retarget | Checksum: 126f05278
Time (s): cpu = 00:00:00.19; elapsed = 00:00:00.13. Memory (MB): peak = 00:00:00.13
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
INFO: [Opt 31-389] Phase Retarget created 0 cells and removed 0 cells
Phase 2 Constant propagation
INFO: [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).
Phase 2 Constant propagation | Checksum: 126f05278
Time (s): cpu = 00:00:00.22; elapsed = 00:00:00.16. Memory (MB): peak = 00:00:00.16
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
INFO: [Opt 31-389] Phase Constant propagation created 0 cells and removed 0
cells
```

```
Phase 3 Sweep
Phase 3 Sweep | Checksum: 141806dcc
Time (s): cpu = 00:00:00.26; elapsed = 00:00:00.20. Memory (MB): peak = 00:00:00.20
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
INFO: [Opt 31-389] Phase Sweep created 0 cells and removed 0 cells
Phase 4 BUFG optimization
Phase 4 BUFG optimization | Checksum: 141806dcc
Time (s): cpu = 00:00:00.30; elapsed = 00:00:00.24. Memory (MB): peak = 00:00:00.24
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
INFO: [Opt 31-662] Phase BUFG optimization created 0 cells of which 0 are
BUFGs and removed 0 cells.
Phase 5 Shift Register Optimization
Phase 5 Shift Register Optimization | Checksum: 17b81c0e1
Time (s): cpu = 00:00:00.34; elapsed = 00:00:00.27. Memory (MB): peak = 00:00:00.27
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
INFO: [Opt 31-389] Phase Shift Register Optimization created 0 cells and
removed 0 cells
Phase 6 Post Processing Netlist
Phase 6 Post Processing Netlist | Checksum: 17b81c0e1
Time (s): cpu = 00:00:00.34; elapsed = 00:00:00.28. Memory (MB): peak = 00:00:00.28
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
INFO: [Opt 31-389] Phase Post Processing Netlist created 0 cells and removed
0 cells
Starting Connectivity Check Task
Time (s): cpu = 00:00:00.01; elapsed = 00:00:00.01. Memory (MB): peak = 00:00:00.01
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
Ending Logic Optimization Task | Checksum: 17b81c0e1
Time (s): cpu = 00:00:00.35; elapsed = 00:00:00.30. Memory (MB): peak =
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
Starting Power Optimization Task
INFO: [Pwropt 34-132] Skipping clock gating for clocks with a period < 2.00
ns.
Ending Power Optimization Task | Checksum: 17b81c0e1
Time (s): cpu = 00:00:00.02; elapsed = 00:00:00.06. Memory (MB): peak = 00:00:00.06
2251.086 ; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
Starting Final Cleanup Task
Ending Final Cleanup Task | Checksum: 17b81c0e1
```

```
Time (s): cpu = 00:00:00; elapsed = 00:00:00. Memory (MB): peak = 2251.086
; gain = 0.000 ; free physical = 43843 ; free virtual = 150101
INFO: [Common 17-83] Releasing license: Implementation
23 Infos, 0 Warnings, 0 Critical Warnings and 0 Errors encountered.
opt_design completed successfully
opt design: Time (s): cpu = 00:00:18 ; elapsed = 00:01:27 . Memory (MB): peak
= 2251.086 ; gain = 546.527 ; free physical = 43843 ; free virtual = 150101
INFO: [Timing 38-480] Writing timing data to binary archive.
Writing placer database...
Writing XDEF routing.
Writing XDEF routing logical nets.
Writing XDEF routing special nets.
Write XDEF Complete: Time (s): cpu = 00:00:00.05 ; elapsed = 00:00:00.02 .
Memory (MB): peak = 2283.098; gain = 0.000; free physical = 43836; free
virtual = 150095
INFO: [Common 17-1381] The checkpoint
'/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1/cpu opt.d
cp' has been generated.
INFO: [runtcl-4] Executing : report drc -file cpu drc opted.rpt -pb
cpu drc opted.pb -rpx cpu drc opted.rpx
Command: report_drc -file cpu_drc_opted.rpt -pb cpu_drc_opted.pb -rpx
cpu_drc_opted.rpx
INFO: [IP Flow 19-234] Refreshing IP repositories
INFO: [IP Flow 19-1704] No user IP repositories specified
INFO: [IP Flow 19-2313] Loaded Vivado IP repository
'/CMC/tools/xilinx/Vivado_2018.2/Vivado/2018.2/data/ip'.
INFO: [DRC 23-27] Running DRC with 8 threads
INFO: [Coretcl 2-168] The results of DRC are in file
/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1/cpu drc op
ted.rpt.
report drc completed successfully
report drc: Time (s): cpu = 00:00:04 ; elapsed = 00:00:07 . Memory (MB): peak
= 2363.141 ; gain = 80.031 ; free physical = 43798 ; free virtual = 150056
Command: place design
Attempting to get a license for feature 'Implementation' and/or device
'xc7a100t'
INFO: [Common 17-349] Got license for feature 'Implementation' and/or device
'xc7a100t'
INFO: [DRC 23-27] Running DRC with 8 threads
INFO: [Vivado Tcl 4-198] DRC finished with 0 Errors
INFO: [Vivado Tcl 4-199] Please refer to the DRC report (report drc) for more
information.
Running DRC as a precondition to command place_design
INFO: [DRC 23-27] Running DRC with 8 threads
INFO: [Vivado_Tcl 4-198] DRC finished with 0 Errors
INFO: [Vivado_Tcl 4-199] Please refer to the DRC report (report_drc) for more
information.
```

INFO: [Place 30-611] Multithreading enabled for place_design using a maximum
of 8 CPUs

Phase 1 Placer Initialization

Phase 1.1 Placer Initialization Netlist Sorting
Netlist sorting complete. Time (s): cpu = 00:00:00; elapsed = 00:00:00.

Memory (MB): peak = 2363.141; gain = 0.000; free physical = 43791; free virtual = 150050

Phase 1.1 Placer Initialization Netlist Sorting | Checksum: b411f8e4

Time (s): cpu = 00:00:00.01; elapsed = 00:00:00.03. Memory (MB): peak = 2363.141; gain = 0.000; free physical = 43791; free virtual = 150050 Netlist sorting complete. Time (s): cpu = 00:00:00; elapsed = 00:00:00. Memory (MB): peak = 2363.141; gain = 0.000; free physical = 43791; free virtual = 150050

Phase 1.2 IO Placement/ Clock Placement/ Build Placer Device INFO: [Timing 38-35] Done setting XDC timing constraints. WARNING: [Place 30-574] Poor placement for routing between an IO pin and BUFG. This is normally an ERROR but the CLOCK_DEDICATED_ROUTE constraint is set to FALSE allowing your design to continue. The use of this override is highly discouraged as it may lead to very poor timing results. It is recommended that this error condition be corrected in the design.

clk IBUF inst (IBUF.O) is locked to IOB X0Y82

clk_IBUF_BUFG_inst (BUFG.I) is provisionally placed by clockplacer on BUFGCTRL_X0Y0

Resolution: Poor placement of an IO pin and a BUFG has resulted in the router using a non-dedicated path between the two. There are several things that could trigger this DRC, each of which can cause unpredictable clock insertion delays that result in poor timing. This DRC could be caused by any of the following: (a) a clock port was placed on a pin that is not a CCIO-pin (b)the BUFG has not been placed in the same half of the device or SLR as the CCIO-pin (c) a single ended clock has been placed on the N-Side of a differential pair CCIO-pin.

Phase 1.2 IO Placement/ Clock Placement/ Build Placer Device | Checksum: ab49e252

Time (s): cpu = 00:00:01; elapsed = 00:00:00.90. Memory (MB): peak = 2363.141; gain = 0.000; free physical = 43791; free virtual = 150049

Phase 1.3 Build Placer Netlist Model

Phase 1.3 Build Placer Netlist Model | Checksum: c1ef66f6

Time (s): cpu = 00:00:02; elapsed = 00:00:00.97. Memory (MB): peak = 2363.141; gain = 0.000; free physical = 43790; free virtual = 150049

Phase 1.4 Constrain Clocks/Macros

Phase 1.4 Constrain Clocks/Macros | Checksum: c1ef66f6

```
Time (s): cpu = 00:00:02; elapsed = 00:00:00.98. Memory (MB): peak = 00:00:00.98
2363.141 ; gain = 0.000 ; free physical = 43790 ; free virtual = 150049
Phase 1 Placer Initialization | Checksum: c1ef66f6
Time (s): cpu = 00:00:02; elapsed = 00:00:00.98. Memory (MB): peak =
2363.141 ; gain = 0.000 ; free physical = 43790 ; free virtual = 150049
Phase 2 Global Placement
Phase 2.1 Floorplanning
Phase 2.1 Floorplanning | Checksum: c1ef66f6
Time (s): cpu = 00:00:02; elapsed = 00:00:01. Memory (MB): peak = 2363.141
; gain = 0.000 ; free physical = 43788 ; free virtual = 150047
WARNING: [Place 46-29] place_design is not in timing mode. Skip physical
synthesis in placer
Phase 2 Global Placement | Checksum: 185fe8405
Time (s): cpu = 00:00:09; elapsed = 00:00:03. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43735 ; free virtual = 149994
Phase 3 Detail Placement
Phase 3.1 Commit Multi Column Macros
Phase 3.1 Commit Multi Column Macros | Checksum: 185fe8405
Time (s): cpu = 00:00:09; elapsed = 00:00:03. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43735 ; free virtual = 149994
Phase 3.2 Commit Most Macros & LUTRAMs
Phase 3.2 Commit Most Macros & LUTRAMs | Checksum: 19e853c7b
Time (s): cpu = 00:00:09; elapsed = 00:00:03. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43735 ; free virtual = 149994
Phase 3.3 Area Swap Optimization
Phase 3.3 Area Swap Optimization | Checksum: 17c4092f2
Time (s): cpu = 00:00:09; elapsed = 00:00:03. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43735 ; free virtual = 149994
Phase 3.4 Pipeline Register Optimization
Phase 3.4 Pipeline Register Optimization | Checksum: 17c4092f2
Time (s): cpu = 00:00:09; elapsed = 00:00:03. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43735 ; free virtual = 149994
Phase 3.5 Small Shape Detail Placement
Phase 3.5 Small Shape Detail Placement | Checksum: 226805c67
```

```
Time (s): cpu = 00:00:10; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43741 ; free virtual = 150000
Phase 3.6 Re-assign LUT pins
Phase 3.6 Re-assign LUT pins | Checksum: 226805c67
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43741 ; free virtual = 150000
Phase 3.7 Pipeline Register Optimization
Phase 3.7 Pipeline Register Optimization | Checksum: 226805c67
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43741 ; free virtual = 150000
Phase 3 Detail Placement | Checksum: 226805c67
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43741 ; free virtual = 150000
Phase 4 Post Placement Optimization and Clean-Up
Phase 4.1 Post Commit Optimization
Phase 4.1 Post Commit Optimization | Checksum: 226805c67
Time (s): cpu = 00:00:11 ; elapsed = 00:00:04 . Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43741 ; free virtual = 150000
Phase 4.2 Post Placement Cleanup
Phase 4.2 Post Placement Cleanup | Checksum: 226805c67
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43744 ; free virtual = 150002
Phase 4.3 Placer Reporting
Phase 4.3 Placer Reporting | Checksum: 226805c67
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43744 ; free virtual = 150002
Phase 4.4 Final Placement Cleanup
Phase 4.4 Final Placement Cleanup | Checksum: 226805c67
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43744 ; free virtual = 150002
Phase 4 Post Placement Optimization and Clean-Up | Checksum: 226805c67
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43744 ; free virtual = 150002
Ending Placer Task | Checksum: 15694d1b1
```

```
Time (s): cpu = 00:00:11; elapsed = 00:00:04. Memory (MB): peak = 2418.160
; gain = 55.020 ; free physical = 43759 ; free virtual = 150018
INFO: [Common 17-83] Releasing license: Implementation
41 Infos, 2 Warnings, 0 Critical Warnings and 0 Errors encountered.
place design completed successfully
place design: Time (s): cpu = 00:00:13 ; elapsed = 00:00:09 . Memory (MB):
peak = 2418.160 ; gain = 55.020 ; free physical = 43761 ; free virtual =
150019
INFO: [Timing 38-480] Writing timing data to binary archive.
Writing placer database...
Writing XDEF routing.
Writing XDEF routing logical nets.
Writing XDEF routing special nets.
Write XDEF Complete: Time (s): cpu = 00:00:00.42 ; elapsed = 00:00:00.16 .
Memory (MB): peak = 2418.160; gain = 0.000; free physical = 43751; free
virtual = 150013
INFO: [Common 17-1381] The checkpoint
'/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1/cpu place
d.dcp' has been generated.
INFO: [runtcl-4] Executing : report io -file cpu io placed.rpt
report_io: Time (s): cpu = 00:00:00.08; elapsed = 00:00:00.18. Memory (MB):
peak = 2418.160 ; gain = 0.000 ; free physical = 43750 ; free virtual =
INFO: [runtcl-4] Executing : report utilization -file
cpu_utilization_placed.rpt -pb cpu_utilization_placed.pb
report utilization: Time (s): cpu = 00:00:00.07; elapsed = 00:00:00.19.
Memory (MB): peak = 2418.160 ; gain = 0.000 ; free physical = 43758 ; free
virtual = 150017
INFO: [runtcl-4] Executing : report control sets -verbose -file
cpu control sets placed.rpt
report_control_sets: Time (s): cpu = 00:00:00.04 ; elapsed = 00:00:00.12 .
Memory (MB): peak = 2418.160; gain = 0.000; free physical = 43757; free
virtual = 150017
Command: route design
Attempting to get a license for feature 'Implementation' and/or device
'xc7a100t'
INFO: [Common 17-349] Got license for feature 'Implementation' and/or device
'xc7a100t'
Running DRC as a precondition to command route_design
INFO: [DRC 23-27] Running DRC with 8 threads
WARNING: [DRC PLCK-12] Clock Placer Checks: Poor placement for routing
between an IO pin and BUFG.
Resolution: Poor placement of an IO pin and a BUFG has resulted in the router
using a non-dedicated path between the two. There are several things that
could trigger this DRC, each of which can cause unpredictable clock insertion
delays that result in poor timing. This DRC could be caused by any of the
following: (a) a clock port was placed on a pin that is not a CCIO-pin (b)the
BUFG has not been placed in the same half of the device or SLR as the CCIO-
```

pin (c) a single ended clock has been placed on the N-Side of a differential pair CCIO-pin.

This is normally an ERROR but the CLOCK_DEDICATED_ROUTE constraint is set to FALSE allowing your design to continue. The use of this override is highly discouraged as it may lead to very poor timing results. It is recommended that this error condition be corrected in the design.

clk IBUF inst (IBUF.O) is locked to IOB X0Y82

clk_IBUF_BUFG_inst (BUFG.I) is provisionally placed by clockplacer on BUFGCTRL X0Y0

INFO: [Vivado_Tcl 4-198] DRC finished with 0 Errors, 1 Warnings

INFO: [Vivado_Tcl 4-199] Please refer to the DRC report (report_drc) for more
information.

Starting Routing Task

INFO: [Route 35-254] Multithreading enabled for route_design using a maximum
of 8 CPUs

Checksum: PlaceDB: c9de98c6 ConstDB: 0 ShapeSum: 8cb638eb RouteDB: 0

Phase 1 Build RT Design

Phase 1 Build RT Design | Checksum: 123263277

Time (s): cpu = 00:00:24; elapsed = 00:00:20. Memory (MB): peak = 2460.766; gain = 42.605; free physical = 43619; free virtual = 149879
Post Restoration Checksum: NetGraph: d4aa2a8a NumContArr: 4e7c07ed
Constraints: 0 Timing: 0

Phase 2 Router Initialization

INFO: [Route 35-64] No timing constraints were detected. The router will operate in resource-optimization mode.

Phase 2.1 Fix Topology Constraints

Phase 2.1 Fix Topology Constraints | Checksum: 123263277

Time (s): cpu = 00:00:24; elapsed = 00:00:20. Memory (MB): peak = 2467.754; gain = 49.594; free physical = 43588; free virtual = 149847

Phase 2.2 Pre Route Cleanup

Phase 2.2 Pre Route Cleanup | Checksum: 123263277

Time (s): cpu = 00:00:24 ; elapsed = 00:00:20 . Memory (MB): peak = 2467.754 ; gain = 49.594 ; free physical = 43588 ; free virtual = 149847 Number of Nodes with overlaps = 0

Phase 2 Router Initialization | Checksum: 10319201a

Time (s): cpu = 00:00:24; elapsed = 00:00:21. Memory (MB): peak = 2478.020; gain = 59.859; free physical = 43577; free virtual = 149836

Phase 3 Initial Routing

```
Phase 3 Initial Routing | Checksum: f690aa50
Time (s): cpu = 00:00:26 ; elapsed = 00:00:21 . Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43579 ; free virtual = 149838
Phase 4 Rip-up And Reroute
Phase 4.1 Global Iteration 0
Number of Nodes with overlaps = 246
Number of Nodes with overlaps = 3
Number of Nodes with overlaps = 0
Phase 4.1 Global Iteration 0 | Checksum: 1183ea04f
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43577 ; free virtual = 149837
Phase 4 Rip-up And Reroute | Checksum: 1183ea04f
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43577 ; free virtual = 149837
Phase 5 Delay and Skew Optimization
Phase 5 Delay and Skew Optimization | Checksum: 1183ea04f
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43577 ; free virtual = 149837
Phase 6 Post Hold Fix
Phase 6.1 Hold Fix Iter
Phase 6.1 Hold Fix Iter | Checksum: 1183ea04f
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43577 ; free virtual = 149837
Phase 6 Post Hold Fix | Checksum: 1183ea04f
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43577 ; free virtual = 149837
Phase 7 Route finalize
Router Utilization Summary
 Global Vertical Routing Utilization = 0.370327 %
 Global Horizontal Routing Utilization = 0.437837 %
 Routable Net Status*
 *Does not include unroutable nets such as driverless and loadless.
 Run report_route_status for detailed report.
 Number of Failed Nets
 Number of Unrouted Nets
                                     = 0
 Number of Partially Routed Nets
                                     = 0
 Number of Node Overlaps
                                     = 0
```

```
Congestion Report
North Dir 1x1 Area, Max Cong = 30.6306%, No Congested Regions.
South Dir 1x1 Area, Max Cong = 41.4414%, No Congested Regions.
East Dir 1x1 Area, Max Cong = 39.7059%, No Congested Regions.
West Dir 1x1 Area, Max Cong = 35.2941%, No Congested Regions.
Reporting congestion hotspots
-----
Direction: North
_____
Congested clusters found at Level 0
Effective congestion level: 0 Aspect Ratio: 1 Sparse Ratio: 0
Direction: South
-----
Congested clusters found at Level 0
Effective congestion level: 0 Aspect Ratio: 1 Sparse Ratio: 0
Direction: East
_____
Congested clusters found at Level 0
Effective congestion level: 0 Aspect Ratio: 1 Sparse Ratio: 0
Direction: West
Congested clusters found at Level 0
Effective congestion level: 0 Aspect Ratio: 1 Sparse Ratio: 0
Phase 7 Route finalize | Checksum: 1183ea04f
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43577 ; free virtual = 149837
Phase 8 Verifying routed nets
Verification completed successfully
Phase 8 Verifying routed nets | Checksum: 1183ea04f
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43576 ; free virtual = 149836
Phase 9 Depositing Routes
Phase 9 Depositing Routes | Checksum: d629ab27
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43576 ; free virtual = 149836
INFO: [Route 35-16] Router Completed Successfully
Time (s): cpu = 00:00:29; elapsed = 00:00:22. Memory (MB): peak = 2484.020
; gain = 65.859 ; free physical = 43611 ; free virtual = 149871
```

```
Routing Is Done.
INFO: [Common 17-83] Releasing license: Implementation
54 Infos, 3 Warnings, 0 Critical Warnings and 0 Errors encountered.
route design completed successfully
route_design: Time (s): cpu = 00:00:31 ; elapsed = 00:00:37 . Memory (MB):
peak = 2484.020 ; gain = 65.859 ; free physical = 43611 ; free virtual =
149871
INFO: [Timing 38-480] Writing timing data to binary archive.
Writing placer database...
Writing XDEF routing.
Writing XDEF routing logical nets.
Writing XDEF routing special nets.
Write XDEF Complete: Time (s): cpu = 00:00:00.46 ; elapsed = 00:00:00.20 .
Memory (MB): peak = 2484.020 ; gain = 0.000 ; free physical = 43602 ; free
virtual = 149865
INFO: [Common 17-1381] The checkpoint
'/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1/cpu route
d.dcp' has been generated.
INFO: [runtcl-4] Executing : report drc -file cpu drc routed.rpt -pb
cpu drc routed.pb -rpx cpu drc routed.rpx
Command: report drc -file cpu drc routed.rpt -pb cpu drc routed.pb -rpx
cpu drc routed.rpx
INFO: [DRC 23-27] Running DRC with 8 threads
INFO: [Coretcl 2-168] The results of DRC are in file
/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1/cpu drc ro
uted.rpt.
report drc completed successfully
report drc: Time (s): cpu = 00:00:03 ; elapsed = 00:00:06 . Memory (MB): peak
= 2572.062 ; gain = 88.035 ; free physical = 43589 ; free virtual = 149850
INFO: [runtcl-4] Executing : report methodology -file
cpu_methodology_drc_routed.rpt -pb cpu_methodology_drc_routed.pb -rpx
cpu_methodology_drc_routed.rpx
Command: report_methodology -file cpu_methodology_drc_routed.rpt -pb
cpu methodology drc routed.pb -rpx cpu methodology drc routed.rpx
INFO: [Timing 38-35] Done setting XDC timing constraints.
INFO: [Timing 38-35] Done setting XDC timing constraints.
INFO: [DRC 23-133] Running Methodology with 8 threads
INFO: [Coretcl 2-1520] The results of Report Methodology are in file
/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/impl 1/cpu method
ology drc routed.rpt.
report methodology completed successfully
INFO: [runtcl-4] Executing : report_power -file cpu_power_routed.rpt -pb
cpu power summary routed.pb -rpx cpu power routed.rpx
Command: report_power -file cpu_power_routed.rpt -pb
cpu power summary routed.pb -rpx cpu power routed.rpx
WARNING: [Power 33-232] No user defined clocks were found in the design!
Resolution: Please specify clocks using create_clock/create_generated_clock
for sequential elements. For pure combinatorial circuits, please specify a
virtual clock, otherwise the vectorless estimation might be inaccurate
INFO: [Timing 38-35] Done setting XDC timing constraints.
```

Running Vector-less Activity Propagation...

```
Finished Running Vector-less Activity Propagation
66 Infos, 4 Warnings, 0 Critical Warnings and 0 Errors encountered.
report power failed
INFO: [runtcl-4] Executing : report_route_status -file cpu_route_status.rpt -
pb cpu route status.pb
INFO: [runtcl-4] Executing : report_timing_summary -max_paths 10 -file
cpu_timing_summary_routed.rpt -pb cpu_timing_summary_routed.pb -rpx
cpu timing summary routed.rpx -warn on violation
INFO: [Timing 38-91] UpdateTimingParams: Speed grade: -1, Delay Type:
min max, Timing Stage: Requireds.
INFO: [Timing 38-191] Multithreading enabled for timing update using a
maximum of 8 CPUs
WARNING: [Timing 38-313] There are no user specified timing constraints.
Timing constraints are needed for proper timing analysis.
INFO: [runtcl-4] Executing : report_incremental_reuse -file
cpu incremental reuse routed.rpt
INFO: [Vivado Tcl 4-545] No incremental reuse to report, no incremental
placement and routing data was found.
INFO: [runtcl-4] Executing : report clock utilization -file
cpu clock utilization routed.rpt
INFO: [runtcl-4] Executing : report_bus_skew -warn_on_violation -file
cpu_bus_skew_routed.rpt -pb cpu_bus skew routed.pb -rpx
cpu bus skew routed.rpx
INFO: [Timing 38-91] UpdateTimingParams: Speed grade: -1, Delay Type:
min max, Timing Stage: Requireds.
INFO: [Timing 38-191] Multithreading enabled for timing update using a
maximum of 8 CPUs
INFO: [Common 17-206] Exiting Vivado at Wed Dec 8 11:53:46 2021...
*** Running vivado
    with args -log cpu.vdi -applog -m64 -product Vivado -messageDb vivado.pb
-mode batch -source cpu.tcl -notrace
***** Vivado v2018.2 (64-bit)
  **** SW Build 2258646 on Thu Jun 14 20:02:38 MDT 2018
  **** IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018
    ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
source cpu.tcl -notrace
Command: open checkpoint cpu routed.dcp
Starting open checkpoint Task
Time (s): cpu = 00:00:00.09; elapsed = 00:00:00.29. Memory (MB): peak = 00:00:00.29
1343.129 ; gain = 0.000 ; free physical = 44535 ; free virtual = 150797
INFO: [Netlist 29-17] Analyzing 306 Unisim elements for replacement
INFO: [Netlist 29-28] Unisim Transformation completed in 0 CPU seconds
```

```
INFO: [Project 1-479] Netlist was created with Vivado 2018.2
INFO: [Device 21-403] Loading part xc7a100tcsg324-1
INFO: [Project 1-570] Preparing netlist for logic optimization
INFO: [Timing 38-478] Restoring timing data from binary archive.
INFO: [Timing 38-479] Binary timing data restore complete.
INFO: [Project 1-856] Restoring constraints from binary archive.
INFO: [Project 1-853] Binary constraint restore complete.
Reading XDEF placement.
Reading placer database...
Reading XDEF routing.
Read XDEF File: Time (s): cpu = 00:00:00.26 ; elapsed = 00:00:00.61 . Memory
(MB): peak = 2141.250 ; gain = 0.004 ; free physical = 43808 ; free virtual =
150070
Restored from archive | CPU: 0.620000 secs | Memory: 3.695457 MB |
Finished XDEF File Restore: Time (s): cpu = 00:00:00.26 ; elapsed =
00:00:00.61 . Memory (MB): peak = 2141.250 ; gain = 0.004 ; free physical =
43808 ; free virtual = 150070
INFO: [Project 1-111] Unisim Transformation Summary:
No Unisim elements were transformed.
INFO: [Project 1-604] Checkpoint was created with Vivado v2018.2 (64-bit)
build 2258646
open_checkpoint: Time (s): cpu = 00:00:27 ; elapsed = 00:02:46 . Memory (MB):
peak = 2141.250 ; gain = 798.125 ; free physical = 43807 ; free virtual =
150069
Command: write bitstream -force cpu.bit
Attempting to get a license for feature 'Implementation' and/or device
'xc7a100t'
INFO: [Common 17-349] Got license for feature 'Implementation' and/or device
'xc7a100t'
Running DRC as a precondition to command write bitstream
INFO: [IP Flow 19-234] Refreshing IP repositories
INFO: [IP Flow 19-1704] No user IP repositories specified
INFO: [IP Flow 19-2313] Loaded Vivado IP repository
'/CMC/tools/xilinx/Vivado 2018.2/Vivado/2018.2/data/ip'.
INFO: [DRC 23-27] Running DRC with 8 threads
WARNING: [DRC CFGBVS-1] Missing CFGBVS and CONFIG_VOLTAGE Design Properties:
Neither the CFGBVS nor CONFIG_VOLTAGE voltage property is set in the
current design. Configuration bank voltage select (CFGBVS) must be set to
VCCO or GND, and CONFIG_VOLTAGE must be set to the correct configuration
voltage, in order to determine the I/O voltage support for the pins in bank
0. It is suggested to specify these either using the 'Edit Device
Properties' function in the GUI or directly in the XDC file using the
following syntax:
 set_property CFGBVS value1 [current_design]
 #where value1 is either VCCO or GND
 set property CONFIG VOLTAGE value2 [current design]
 #where value2 is the voltage provided to configuration bank 0
```

```
Refer to the device configuration user guide for more information.
WARNING: [DRC PDRC-153] Gated clock check: Net U2/bitreg_reg[12][31] is a
gated clock net sourced by a combinational pin U2/reg write reg i 2/0, cell
U2/reg_write_reg_i_2. This is not good design practice and will likely impact
performance. For SLICE registers, for example, use the CE pin to control the
loading of data.
WARNING: [DRC PDRC-153] Gated clock check: Net U7/E[0] is a gated clock net
sourced by a combinational pin U7/next_pc_reg[4]_i_2/0, cell
U7/next pc reg[4] i 2. This is not good design practice and will likely
impact performance. For SLICE registers, for example, use the CE pin to
control the loading of data.
INFO: [Vivado 12-3199] DRC finished with 0 Errors, 3 Warnings
INFO: [Vivado 12-3200] Please refer to the DRC report (report drc) for more
information.
INFO: [Designutils 20-2272] Running write bitstream with 8 threads.
Loading data files...
Loading site data...
Loading route data...
Processing options...
Creating bitmap...
Creating bitstream...
Writing bitstream ./cpu.bit...
INFO: [Vivado 12-1842] Bitgen Completed Successfully.
INFO: [Common 17-83] Releasing license: Implementation
21 Infos, 3 Warnings, 0 Critical Warnings and 0 Errors encountered.
write bitstream completed successfully
write bitstream: Time (s): cpu = 00:00:14; elapsed = 00:00:39. Memory (MB):
peak = 2621.090 ; gain = 479.840 ; free physical = 43739 ; free virtual =
150004
INFO: [Common 17-206] Exiting Vivado at Wed Dec 8 11:58:43 2021...
Synthesis Design
*** Running vivado
    with args -log cpu.vds -m64 -product Vivado -mode batch -messageDb
vivado.pb -notrace -source cpu.tcl
***** Vivado v2018.2 (64-bit)
  **** SW Build 2258646 on Thu Jun 14 20:02:38 MDT 2018
  **** IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018
    ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
source cpu.tcl -notrace
Command: synth_design -top cpu -part xc7a100tcsg324-1
Starting synth_design
Attempting to get a license for feature 'Synthesis' and/or device 'xc7a100t'
```

```
INFO: [Common 17-349] Got license for feature 'Synthesis' and/or device
'xc7a100t'
INFO: Launching helper process for spawning children vivado processes
INFO: Helper process launched with PID 27286
Starting RTL Elaboration: Time (s): cpu = 00:00:02; elapsed = 00:00:05.
Memory (MB): peak = 1468.594; gain = 86.727; free physical = 44440; free
virtual = 150698
INFO: [Synth 8-638] synthesizing module 'cpu'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:12]
INFO: [Synth 8-3491] module 'next_address' declared at
'/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/next_address.vhd:4' bound to instance 'U1' of component 'next_address'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:114]
INFO: [Synth 8-638] synthesizing module 'next address'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/next address.vhd:14]
INFO: [Synth 8-226] default block is never used
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/next address.vhd:361
INFO: [Synth 8-256] done synthesizing module 'next address' (1#1)
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/next address.vhd:14]
INFO: [Synth 8-3491] module 'pc_icache' declared at
'/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/pc_icache.vhd:7' bound to instance 'U2' of component 'pc_icache'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:115]
INFO: [Synth 8-638] synthesizing module 'pc icache'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/pc_icache.vhd:19]
INFO: [Synth 8-226] default block is never used
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/pc icache.vhd:113]
INFO: [Synth 8-256] done synthesizing module 'pc_icache' (2#1)
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/pc icache.vhd:19]
INFO: [Synth 8-3491] module 'regfile' declared at
'/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/reg file.vhd:8' bound to instance 'U3' of component 'regfile'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/cpu.vhd:116]
INFO: [Synth 8-638] synthesizing module 'regfile'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/reg_file.vhd:20]
```

```
INFO: [Synth 8-256] done synthesizing module 'regfile' (3#1)
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/reg_file.vhd:20]
INFO: [Synth 8-3491] module 'signextension mux' declared at
'/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/signextension.vhd:7' bound to instance 'U4' of component
'signextension mux'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:117]
INFO: [Synth 8-638] synthesizing module 'signextension mux'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/signextension.vhd:16]
INFO: [Synth 8-226] default block is never used
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/signextension.vhd:22]
INFO: [Synth 8-256] done synthesizing module 'signextension mux' (4#1)
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/signextension.vhd:16]
INFO: [Synth 8-3491] module 'ALU' declared at
'/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/ALU.vhd:7' bound to instance 'U5' of component 'ALU'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:118]
INFO: [Synth 8-638] synthesizing module 'ALU'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/ALU.vhd:17]
INFO: [Synth 8-226] default block is never used
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/ALU.vhd:23]
INFO: [Synth 8-226] default block is never used
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/ALU.vhd:39]
INFO: [Synth 8-226] default block is never used
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/ALU.vhd:75]
INFO: [Synth 8-256] done synthesizing module 'ALU' (5#1)
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/ALU.vhd:17]
INFO: [Synth 8-3491] module 'datacache' declared at
'/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/datacache.vhd:6' bound to instance 'U6' of component 'datacache'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:119]
INFO: [Synth 8-638] synthesizing module 'datacache'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/datacache.vhd:14]
WARNING: [Synth 8-614] signal 'data_write' is read in the process but is not
in the sensitivity list
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/datacache.vhd:24]
```

```
INFO: [Synth 8-226] default block is never used
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/datacache.vhd:66]
INFO: [Synth 8-256] done synthesizing module 'datacache' (6#1)
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/datacache.vhd:14]
INFO: [Synth 8-3491] module 'opcoderoute' declared at
'/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:7' bound to instance 'U7' of component 'opcoderoute'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:120]
INFO: [Synth 8-638] synthesizing module 'opcoderoute'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:14]
INFO: [Synth 8-256] done synthesizing module 'opcoderoute' (7#1)
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:14]
INFO: [Synth 8-256] done synthesizing module 'cpu' (8#1)
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/cpu.vhd:12]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[25]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[24]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[23]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[22]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[21]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[20]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[19]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[18]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout_combin[17]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[16]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[15]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[14]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[13]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[12]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout_combin[11]
```

```
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[10]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[9]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[8]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout_combin[7]
WARNING: [Synth 8-3331] design opcoderoute has unconnected port
icacheout combin[6]
Finished RTL Elaboration: Time (s): cpu = 00:00:03; elapsed = 00:00:07.
Memory (MB): peak = 1513.234; gain = 131.367; free physical = 44442; free
virtual = 150700
Report Check Netlist:
+----+----+-----+
            |Errors |Warnings |Status |Description
    |Item
+----+
|1 |multi_driven_nets | 0 | 0 |Passed |Multi driven nets |
+----+
Start Handling Custom Attributes
  Finished Handling Custom Attributes : Time (s): cpu = 00:00:03 ; elapsed =
00:00:07 . Memory (MB): peak = 1513.234 ; gain = 131.367 ; free physical =
44447 ; free virtual = 150705
______
Finished RTL Optimization Phase 1 : Time (s): cpu = 00:00:03 ; elapsed =
00:00:07 . Memory (MB): peak = 1513.234 ; gain = 131.367 ; free physical =
44447 ; free virtual = 150705
INFO: [Device 21-403] Loading part xc7a100tcsg324-1
INFO: [Project 1-570] Preparing netlist for logic optimization
Processing XDC Constraints
Initializing timing engine
```

```
Parsing XDC File
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/constrs 1/import
s/lab5tedstuff/cpu.xdc]
Finished Parsing XDC File
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/constrs_1/import
s/lab5tedstuff/cpu.xdc]
INFO: [Project 1-236] Implementation specific constraints were found while
reading constraint file
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/constrs 1/import
s/lab5tedstuff/cpu.xdc]. These constraints will be ignored for synthesis but
will be used in implementation. Impacted constraints are listed in the file
[.Xil/cpu propImpl.xdc].
Resolution: To avoid this warning, move constraints listed in
[.Xil/cpu propImpl.xdc] to another XDC file and exclude this new file from
synthesis with the used in synthesis property (File Properties dialog in GUI)
and re-run elaboration/synthesis.
Completed Processing XDC Constraints
INFO: [Project 1-111] Unisim Transformation Summary:
No Unisim elements were transformed.
Constraint Validation Runtime : Time (s): cpu = 00:00:00 ; elapsed =
00:00:00.01 . Memory (MB): peak = 1893.160 ; gain = 0.000 ; free physical =
44141 ; free virtual = 150398
-----
Finished Constraint Validation : Time (s): cpu = 00:00:17 ; elapsed =
00:01:40 . Memory (MB): peak = 1893.160 ; gain = 511.293 ; free physical =
44226 ; free virtual = 150484
Start Loading Part and Timing Information
______
Loading part: xc7a100tcsg324-1
______
Finished Loading Part and Timing Information : Time (s): cpu = 00:00:17;
elapsed = 00:01:40 . Memory (MB): peak = 1893.160 ; gain = 511.293 ; free
physical = 44226 ; free virtual = 150484
______
Start Applying 'set_property' XDC Constraints
```

```
Finished applying 'set_property' XDC Constraints : Time (s): cpu = 00:00:17 ;
elapsed = 00:01:40 . Memory (MB): peak = 1893.160 ; gain = 511.293 ; free
physical = 44227 ; free virtual = 150485
INFO: [Synth 8-5546] ROM "bitreg_reg[31]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[30]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[29]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[28]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[27]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[26]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[25]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[24]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[23]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[22]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[21]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[20]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[19]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[18]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg reg[17]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[16]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[15]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[14]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[13]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[12]" won't be mapped to RAM because it
is too sparse
```

INFO: [Synth 8-5546] ROM "bitreg reg[11]" won't be mapped to RAM because it

is too sparse

```
INFO: [Synth 8-5546] ROM "bitreg_reg[10]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[9]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[8]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg reg[7]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[6]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[5]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[4]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[3]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[2]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg reg[1]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5546] ROM "bitreg_reg[0]" won't be mapped to RAM because it is
too sparse
INFO: [Synth 8-5818] HDL ADVISOR - The operator resource <adder> is shared.
To prevent sharing consider applying a KEEP on the output of the operator
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/ALU.vhd:55]
INFO: [Synth 8-5546] ROM "d_cache_reg[31]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[30]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[29]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[28]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[27]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[26]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[25]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[24]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d cache reg[23]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[22]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[21]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[20]" won't be mapped to RAM because it
is too sparse
```

```
INFO: [Synth 8-5546] ROM "d_cache_reg[19]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[18]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[17]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d cache reg[16]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[15]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[14]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[13]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[12]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[11]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d cache reg[10]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[9]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[8]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d cache reg[7]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d cache reg[6]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[5]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[4]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[3]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[2]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[1]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "d_cache_reg[0]" won't be mapped to RAM because it
is too sparse
INFO: [Synth 8-5546] ROM "reg write" won't be mapped to RAM because it is too
WARNING: [Synth 8-327] inferring latch for variable 'next pc reg'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/next address.vhd:39]
WARNING: [Synth 8-327] inferring latch for variable 'reg_write_reg'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/opcoderoute.vhd:21]
```

```
WARNING: [Synth 8-327] inferring latch for variable 'reg dst reg'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:22]
WARNING: [Synth 8-327] inferring latch for variable 'reg in src reg'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/opcoderoute.vhd:231
WARNING: [Synth 8-327] inferring latch for variable 'alu src reg'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:24]
WARNING: [Synth 8-327] inferring latch for variable 'add sub reg'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/opcoderoute.vhd:25]
WARNING: [Synth 8-327] inferring latch for variable 'data write reg'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:26]
WARNING: [Synth 8-327] inferring latch for variable 'logic func reg'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:27]
WARNING: [Synth 8-327] inferring latch for variable 'alu func reg'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/opcoderoute.vhd:28]
WARNING: [Synth 8-327] inferring latch for variable 'branch_type_reg'
[/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources_1/import
s/lab5/opcoderoute.vhd:301
WARNING: [Synth 8-327] inferring latch for variable 'pc sel reg'
[/nfs/home/o/o dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.srcs/sources 1/import
s/lab5/opcoderoute.vhd:31]
-----
Finished RTL Optimization Phase 2 : Time (s): cpu = 00:00:17 ; elapsed =
00:01:40 . Memory (MB): peak = 1893.160 ; gain = 511.293 ; free physical =
44218 ; free virtual = 150477
Report RTL Partitions:
+-+----+
| RTL Partition | Replication | Instances |
+-+----+
+-+----+
Start RTL Component Statistics
Detailed RTL Component Info :
+---Adders :
          2 Input 32 Bit 3 Input 32 Bit
                               Adders := 2
                               Adders := 1
+---XORs :
```

```
2 Input 32 Bit
                               XORs := 1
+---Registers:
                  32 Bit Registers := 65
+---Muxes:
                  32 Bit
                              Muxes := 4
        2 Input
       4 II.,
2 Input
14 Input
3 L
14 Input
2 Bit
1 Input
2 Bit
1 Bit
        4 Input
                  32 Bit
                              Muxes := 5
                              Muxes := 1
                              Muxes := 1
                              Muxes := 3
                              Muxes := 3
                              Muxes := 1
        4 Input 1 Bit
2 Input 1 Bit
1 Bit
                              Muxes := 3
                              Muxes := 67
                              Muxes := 3
        14 Input
                   1 Bit
                              Muxes := 5
-----
Finished RTL Component Statistics
______
Start RTL Hierarchical Component Statistics
Hierarchical RTL Component report
Module next address
Detailed RTL Component Info :
+---Adders:
        2 Input 32 Bit Adders := 2
+---Muxes :
        2 Input 32 Bit
4 Input 32 Bit
4 Input
                            Muxes := 1
                            Muxes := 2
        4 Input
                  1 Bit
                             Muxes := 2
Module pc icache
Detailed RTL Component Info :
+---Registers :
                  32 Bit Registers := 1
+---Muxes:
        2 Input
                   5 Bit
                              Muxes := 1
Module regfile
Detailed RTL Component Info :
+---Registers:
                  32 Bit
                          Registers := 32
+---Muxes:
        2 Input
                   1 Bit
                              Muxes := 32
Module signextension_mux
Detailed RTL Component Info :
+---Muxes:
        4 Input
                  32 Bit Muxes := 1
```

```
2 Input 32 Bit
                          Muxes := 1
Module ALU
Detailed RTL Component Info :
+---Adders :
       3 Input 32 Bit Adders := 1
+---XORs :
       2 Input 32 Bit
                          XORs := 1
              32 Bit
32 R**
+---Muxes:
       4 Input
                          Muxes := 2
                          Muxes := 1
       2 Input
       2 Input
                1 Bit
                          Muxes := 3
Module datacache
Detailed RTL Component Info :
+---Registers:
                32 Bit Registers := 32
+---Muxes:
       2 Input 32 Bit
                          Muxes := 1
                1 Bit
       2 Input
                          Muxes := 32
Module opcoderoute
Detailed RTL Component Info :
+---Muxes:
       14 Input 3 Bit
                          Muxes := 1
      14 Input 2 Bit 9 Input 2 Bit 2 Bit
                          Muxes := 3
                          Muxes := 3
                2 Bit
       5 Input
                          Muxes := 1
       9 Input 1 Bit
14 Input 1 Bit
                          Muxes := 3
                          Muxes := 5
              1 Bit
       4 Input
                          Muxes := 1
  ______
Finished RTL Hierarchical Component Statistics
______
Start Part Resource Summary
______
Part Resources:
DSPs: 240 (col length:80)
BRAMs: 270 (col length: RAMB18 80 RAMB36 40)
______
Finished Part Resource Summary
```

Start Cross Boundary and Area Optimization

```
---
```

Warning: Parallel synthesis criteria is not met

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[25]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[24]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[23]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[22]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[21]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout_combin[20]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[19]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[18]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[17]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[16]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[15]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[14]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout_combin[13]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[12]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[11]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout_combin[10]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[9]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[8]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[7]

WARNING: [Synth 8-3331] design opcoderoute has unconnected port icacheout combin[6]

INFO: [Synth 8-3333] propagating constant 0 across sequential element $(U7/pc_sel_reg[1])$

WARNING: [Synth 8-3332] Sequential element (next_pc_reg[31]) is unused and will be removed from module next_address.

WARNING: [Synth 8-3332] Sequential element (next_pc_reg[30]) is unused and will be removed from module next address.

```
WARNING: [Synth 8-3332] Sequential element (next pc reg[29]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[28]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[27]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next pc reg[26]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[25]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[24]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next pc reg[23]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[22]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[21]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next pc reg[20]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[19]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[18]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next pc reg[17]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next pc reg[16]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[15]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[14]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next pc reg[13]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[12]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[11]) is unused and
will be removed from module next_address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[10]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[9]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next pc reg[8]) is unused and
will be removed from module next_address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[7]) is unused and
will be removed from module next_address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[6]) is unused and
will be removed from module next address.
WARNING: [Synth 8-3332] Sequential element (next_pc_reg[5]) is unused and
will be removed from module next_address.
```

```
WARNING: [Synth 8-3332] Sequential element (pc reg[31]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[30]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[29]) is unused and will be
removed from module pc_icache.
WARNING: [Synth 8-3332] Sequential element (pc reg[28]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[27]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[26]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[25]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[24]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[23]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc reg[22]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[21]) is unused and will be
removed from module pc_icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[20]) is unused and will be
removed from module pc_icache.
WARNING: [Synth 8-3332] Sequential element (pc reg[19]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[18]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[17]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[16]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[15]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[14]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[13]) is unused and will be
removed from module pc_icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[12]) is unused and will be
removed from module pc_icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[11]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc reg[10]) is unused and will be
removed from module pc_icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[9]) is unused and will be
removed from module pc_icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[8]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[7]) is unused and will be
removed from module pc_icache.
```

```
WARNING: [Synth 8-3332] Sequential element (pc reg[6]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (pc_reg[5]) is unused and will be
removed from module pc icache.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][31]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][30]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][29]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][28]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][27]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][26]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][25]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][24]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][23]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][22]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][21]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][20]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][19]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][18]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][17]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][16]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][15]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][14]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][13]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][12]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][11]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][10]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][9]) is unused and
will be removed from module regfile.
```

```
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][8]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][7]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][6]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][5]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][4]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][3]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[31][2]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][1]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[31][0]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[30][31]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][30]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][29]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[30][28]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[30][27]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][26]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][25]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[30][24]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][23]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][22]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][21]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][20]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg reg[30][19]) is unused and
will be removed from module regfile.
WARNING: [Synth 8-3332] Sequential element (bitreg_reg[30][18]) is unused and
will be removed from module regfile.
INFO: [Common 17-14] Message 'Synth 8-3332' appears 100 times and further
instances of the messages will be disabled. Use the Tcl command
set_msg_config to change the current settings.
```

Finished Cross Boundary and Area Optimization : Time (s): cpu = 00:00:40 ; elapsed = 00:02:04 . Memory (MB): peak = 1908.418 ; gain = 526.551 ; free physical = 44188 ; free virtual = 150450
Report RTL Partitions:
+-++ RTL Partition Replication Instances
+-++ +-++
Start Applying XDC Timing Constraints
Finished Applying XDC Timing Constraints : Time (s): cpu = 00:00:47 ; elapsed = 00:02:25 . Memory (MB): peak = 1908.426 ; gain = 526.559 ; free physical = 44066 ; free virtual = 150327
 Start Timing Optimization
Finished Timing Optimization : Time (s): cpu = 00:00:49 ; elapsed = 00:02:27 . Memory (MB): peak = 1908.426 ; gain = 526.559 ; free physical = 44050 ; free virtual = 150312
Report RTL Partitions:
+-++ RTL Partition Replication Instances
+-++ +-++
 Start Technology Mapping

```
Finished Technology Mapping: Time (s): cpu = 00:00:51; elapsed = 00:02:28.
Memory (MB): peak = 1926.363; gain = 544.496; free physical = 44057; free
virtual = 150318
Report RTL Partitions:
+-+----+
| RTL Partition | Replication | Instances |
+-+----+
+-+----+
Start IO Insertion
Start Flattening Before IO Insertion
______
Finished Flattening Before IO Insertion
______
Start Final Netlist Cleanup
Finished Final Netlist Cleanup
Finished IO Insertion: Time (s): cpu = 00:00:51; elapsed = 00:02:29.
Memory (MB): peak = 1926.367; gain = 544.500; free physical = 44057; free
virtual = 150319
Report Check Netlist:
+----+
    ltem
               |Errors |Warnings |Status |Description
|multi_driven_nets | 0| 0|Passed |Multi driven nets |
```

 Start Renaming Generated Instances
Finished Renaming Generated Instances: Time (s): cpu = 00:00:51; elapsed = 00:02:29. Memory (MB): peak = 1926.367; gain = 544.500; free physical = 44057; free virtual = 150319
Report RTL Partitions:
RTL Partition Replication Instances
+-+
Start Rebuilding User Hierarchy
Finished Rebuilding User Hierarchy: Time (s): cpu = 00:00:51; elapsed = 00:02:29. Memory (MB): peak = 1926.367; gain = 544.500; free physical = 44057; free virtual = 150319
Start Renaming Generated Ports
Finished Renaming Generated Ports: Time (s): cpu = 00:00:51; elapsed = 00:02:29. Memory (MB): peak = 1926.367; gain = 544.500; free physical = 44057; free virtual = 150319
Start Handling Custom Attributes

```
Finished Handling Custom Attributes : Time (s): cpu = 00:00:51 ; elapsed =
00:02:29 . Memory (MB): peak = 1926.367 ; gain = 544.500 ; free physical =
44058 ; free virtual = 150319
______
Start Renaming Generated Nets
------
Finished Renaming Generated Nets: Time (s): cpu = 00:00:51; elapsed =
00:02:29 . Memory (MB): peak = 1926.367 ; gain = 544.500 ; free physical =
44058 ; free virtual = 150319
Start Writing Synthesis Report
Report BlackBoxes:
+-+----+
| |BlackBox name |Instances |
+-+----+
+-+----+
Report Cell Usage:
+----+
    |Cell |Count |
+----+
     BUFG
1
              1
2
     CARRY4
              17|
13
     LUT2
              1|
14
     LUT3
             40
15
     LUT4
              8|
16
     LUT5
             921
|7
     LUT6
             644 l
8
     MUXF7
             193
|9
     MUXF8
             94
10
     FDCE
             1541
11
     LD
              18
12
     IBUF
              2
              14
13
     OBUF
+-----+
```

Report Instance Areas:

+----+

```
|Instance |Module
                         |Cells |
1
                                  2665
      top
        U1
12
                next address
                                      5 l
13
         U6
                ldatacache
                                  | 1472|
14
      | U2
                pc_icache
                                   | 134|
15
       l U3
                regfile
                                     803 l
16
         U4
                |signextension mux |
                                       34|
                opcoderoute |
|7
      U7
                                       193
Finished Writing Synthesis Report : Time (s): cpu = 00:00:51 ; elapsed =
00:02:29 . Memory (MB): peak = 1926.367 ; gain = 544.500 ; free physical =
44058 ; free virtual = 150319
Synthesis finished with 0 errors, 0 critical warnings and 598 warnings.
Synthesis Optimization Runtime : Time (s): cpu = 00:00:40 ; elapsed =
00:01:01 . Memory (MB): peak = 1926.367 ; gain = 164.574 ; free physical =
44114 ; free virtual = 150375
Synthesis Optimization Complete : Time (s): cpu = 00:00:51 ; elapsed =
00:02:29 . Memory (MB): peak = 1926.371 ; gain = 544.500 ; free physical =
44124 ; free virtual = 150386
INFO: [Project 1-571] Translating synthesized netlist
INFO: [Netlist 29-17] Analyzing 324 Unisim elements for replacement
INFO: [Netlist 29-28] Unisim Transformation completed in 0 CPU seconds
INFO: [Project 1-570] Preparing netlist for logic optimization
INFO: [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).
INFO: [Project 1-111] Unisim Transformation Summary:
 A total of 18 instances were transformed.
 LD => LDCE: 18 instances
INFO: [Common 17-83] Releasing license: Synthesis
110 Infos, 152 Warnings, 0 Critical Warnings and 0 Errors encountered.
synth design completed successfully
synth design: Time (s): cpu = 00:00:53; elapsed = 00:02:31. Memory (MB):
peak = 1958.383 ; gain = 589.242 ; free physical = 44108 ; free virtual =
150370
WARNING: [Constraints 18-5210] No constraint will be written out.
INFO: [Common 17-1381] The checkpoint
'/nfs/home/o/o_dabaye/COEN316/code/lab5/lab5cpu/lab5cpu.runs/synth 1/cpu.dcp'
has been generated.
INFO: [runtcl-4] Executing : report_utilization -file
cpu utilization synth.rpt -pb cpu utilization synth.pb
report_utilization: Time (s): cpu = 00:00:00.07; elapsed = 00:00:00.19.
Memory (MB): peak = 1982.402; gain = 0.000; free physical = 44107; free
virtual = 150370
INFO: [Common 17-206] Exiting Vivado at Wed Dec 8 11:49:11 2021...
```

OPCODEROUTE DOFILE

force icacheout_combin 000000000000000000000000000100111 run 2